Statistical convergence of double sequences in neutrosophic $2$-normed spaces
Ural mathematical journal, Tome 10 (2024) no. 1, pp. 99-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we have studied the notion of statistical convergence for double sequences in neutrosophic $2$-normed spaces. Also, we have defined statistically Cauchy double sequences and statistically completeness for double sequences and investigated some interesting results in connection with neutrosophic $2$-normed space.
Keywords: Neutrosophic $2$-normed space, Double natural density, Statistically double convergent sequence, Statistically double Cauchy sequence
@article{UMJ_2024_10_1_a8,
     author = {Rahul Mondal and Nesar Hossain},
     title = {Statistical convergence of double sequences in neutrosophic $2$-normed spaces},
     journal = {Ural mathematical journal},
     pages = {99--111},
     year = {2024},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a8/}
}
TY  - JOUR
AU  - Rahul Mondal
AU  - Nesar Hossain
TI  - Statistical convergence of double sequences in neutrosophic $2$-normed spaces
JO  - Ural mathematical journal
PY  - 2024
SP  - 99
EP  - 111
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a8/
LA  - en
ID  - UMJ_2024_10_1_a8
ER  - 
%0 Journal Article
%A Rahul Mondal
%A Nesar Hossain
%T Statistical convergence of double sequences in neutrosophic $2$-normed spaces
%J Ural mathematical journal
%D 2024
%P 99-111
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a8/
%G en
%F UMJ_2024_10_1_a8
Rahul Mondal; Nesar Hossain. Statistical convergence of double sequences in neutrosophic $2$-normed spaces. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 99-111. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a8/

[1] Atanassov K., “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 20:1 (1986), 87–96 | DOI | MR | Zbl

[2] Atanassov K. T., Gargov G., “Interval valued intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 31:3 (1989), 343–349 | DOI | MR | Zbl

[3] Bustince H., Burillo P., “Vague sets are intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 79:3 (1996), 403–405 | DOI | MR | Zbl

[4] Barros L. C., Bassanezi R. C., Tonelli P. A., “Fuzzy modelling in population dynamics”, Ecological modelling, 128:1 (2000), 27–33 | DOI

[5] Bera T., Mahapatra N. K., “On neutrosophic soft linear spaces”, Fuzzy Inf. Eng., 9:3 (2017), 299–324 | DOI | MR

[6] Bera T., Mahapatra N. K., “Neutrosophic soft normed linear space”, Neutrosophic Sets Syst., 23 (2018), 52–71 | MR

[7] Christopher J., “The asymptotic density of some $k$-dimensional sets”, Amer. Math. Monthly, 63:6 (1956), 399–401 | DOI | MR | Zbl

[8] Connor J. S., “The statistical and strong $p$-Cesaro convergence of sequences”, Analysis, 8:1–2 (1988), 47–63 | DOI | MR | Zbl

[9] Çakallı H., Savaş E., “Statistical convergence of double sequences in topological groups”, J. Comput. Anal. Appl., 12:1A (2010), 421–426 | MR

[10] Nuray F., Dündar E., Ulusu U., “Wijsman statistical convergence of double sequences of sets”, Iran. J. Math. Sci. Inform., 16:1 (2021), 55–64. | MR | Zbl

[11] Debnath S., Debnath S., Choudhury C., “On deferred statistical convergence of sequences in neutrosophic normed spaces”, Sahand Commun. Math. Anal., 19:4 (2022), 81–96 | DOI | MR

[12] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241–244 (in French) | DOI | MR | Zbl

[13] Fridy J. A., “On statistical convergence”, Analysis, 5:4 (1985), 301–313 | DOI | MR | Zbl

[14] Fridy J. A., Orhan C., “Lacunary statistical convergence”, Pacific J. Math., 160:1 (1993), 43–51 | DOI | MR | Zbl

[15] Fradkov A. L., Evans R. J., “Control of chaos: Methods and applications in engineering”, Annu. Rev. Control, 29:1 (2005), 33–56 | DOI | MR

[16] Gähler S., “$2$-normed”, Math. Nachr., 28:1–2 (1964), 1–43 (in German) | DOI | MR | Zbl

[17] Giles R., “A computer program for fuzzy reasoning”, Fuzzy Sets and Systems, 4:3 (1980), 221–234 | DOI | MR | Zbl

[18] Granados C., Dhital A., “Statistical convergence of double sequences in neutrosophic normed spaces”, Neutrosophic Sets Syst., 42 (2021), 333–344 | MR

[19] Hong L., Sun J.-Q., “Bifurcations of fuzzy nonlinear dynamical systems”, Commun. Nonlinear Sci. Numer. Simul., 11:1 (2006), 1–12 | DOI | MR | Zbl

[20] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper I: basic analytical and algebraic properties”, Fuzzy Sets and Systems, 143 (2004), 5–26 | DOI | MR | Zbl

[21] Kirişci M., Şimşek N., “Neutrosophic normed spaces and statistical convergence”, J. Anal., 28 (2020), 1059–1073 | DOI | MR

[22] Kişi Ö., “Ideal convergence of sequences in neutrosophic normed spaces”, J. Intell. Fuzzy Syst., 41:3 (2021), 2581–2590 | DOI

[23] Khan V. A., Khan M. D., Ahmad M., “Some new type of lacunary statistically convergent sequences in neutrosophic normed space”, Neutrosophic Sets Syst., 42:1 (2021), 241–252 https://digitalrepository.unm.edu/nss_journal/vol42/iss1/15 | MR

[24] Madore J., “Fuzzy physics”, Ann. Physics, 219:1 (1992), 187–198 | DOI | MR

[25] Mursaleen M., “$\lambda $-statistical convergence”, Math. Slovaca, 50:1 (2000), 111—115 https://dml.cz/handle/10338.dmlcz/136769 | MR | Zbl

[26] Mursaleen M., Edely O. H. H., “Statistical convergence of double sequences”, J. Math. Anal. Appl., 288:1 (2003), 223–231 | DOI | MR | Zbl

[27] Murtaza S., Sharma A., Kumar V., “Neutrosophic $2$-normed spaces and generalized summability”, Neutrosophic Sets Syst., 55:1 (2023), 25, 415–426 https://digitalrepository.unm.edu/nss_journal/vol55/iss1/25 | MR

[28] Nuray F., Savaş E., “Statistical convergence of sequences of fuzzy numbers”, Math. Slovaca, 45:3 (1995), 269–273 https://dml.cz/handle/10338.dmlcz/129143 | MR | Zbl

[29] Steinhaus H., “Sur la convergence ordinaire et la convergence asymptotique”, Colloq. Math., 2:1 (1951), 73–74 (in French) | MR

[30] Schweizer B., Sklar A., “Statistical metric spaces”, Pacific J. Math., 10:1 (1960), 313–334 | DOI | MR | Zbl

[31] Šalát T., “On statistically convergent sequences of real numbers”, Math. Slovaca, 30:2 (1980), 139–150 https://dml.cz/handle/10338.dmlcz/136236 | MR | Zbl

[32] Smarandache F., “Neutrosophic set, a generalisation of the intuitionistic fuzzy sets”, Int. J. Pure. Appl. Math., 24:3 (2005), 287–297 https://www.ijpam.eu/contents/2005-24-3/1/1.pdf | MR | Zbl

[33] Saadati R., Park J. H., “On the intuitionistic fuzzy topological spaces”, Chaos Solitons Fractals, 27:2 (2006), 331–344 | DOI | MR | Zbl

[34] Şahiner A., Gürdal M., Saltan S., Gunawan H., “Ideal convergence in $2$-normed spaces”, Taiwanese J. Math., 11:5 (2007), 1477—1484 https://www.jstor.org/stable/43834569 | MR

[35] Sarabadan S., Talebi S., “Statistical convergence of double sequences in $2$-normed spaces”, Int. J. Contemp. Math. Sciences, 6:8 (2011), 373–380 | MR | Zbl

[36] Turksen I. B., “Interval valued fuzzy sets based on normal forms”, Fuzzy Sets and Systems, 20:2 (1986), 191–210 | DOI | MR | Zbl

[37] Zadeh L. A., “Fuzzy sets”, Inform. Control, 8:3 (1965), 338–353 | DOI | MR | Zbl