@article{UMJ_2024_10_1_a7,
author = {Leonid M. Martynov and Tatiana V. Pavlova},
title = {Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced, and minimally $\mathbf{M}$-complete associative rings},
journal = {Ural mathematical journal},
pages = {84--98},
year = {2024},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a7/}
}
TY - JOUR
AU - Leonid M. Martynov
AU - Tatiana V. Pavlova
TI - Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced, and minimally $\mathbf{M}$-complete associative rings
JO - Ural mathematical journal
PY - 2024
SP - 84
EP - 98
VL - 10
IS - 1
UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a7/
LA - en
ID - UMJ_2024_10_1_a7
ER -
%0 Journal Article
%A Leonid M. Martynov
%A Tatiana V. Pavlova
%T Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced, and minimally $\mathbf{M}$-complete associative rings
%J Ural mathematical journal
%D 2024
%P 84-98
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a7/
%G en
%F UMJ_2024_10_1_a7
Leonid M. Martynov; Tatiana V. Pavlova. Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced, and minimally $\mathbf{M}$-complete associative rings. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 84-98. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a7/
[1] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya [Radicals of Algebra and Structure Theory], Nauka, Moscow, 1979, 496 pp. (in Russian) | MR
[2] Bourbaki N., {Algebra. Moduli, kol'ca, formy} [Algebra. Modules, Rings, Forms], Mir, Moscow, 1966, 556 pp. (in Russian) | MR
[3] Feis K., Algebra: kol'ca, moduli i kategorii [Algebra: Rings, Modules and Categories], v. 1, Mir, Moscow, 1977, 688 pp. (in Russian) | MR
[4] Fuchs L., Beskonechnye abelevy gruppy [Infinite Abelian Groups], v. 1, Mir, Moscow, 1974, 335 pp. (in Russian) | MR
[5] Fuchs L., Beskonechnye abelevy gruppy [Infinite Abelian Groups], v. 2, Mir, Moscow, 1977, 416 pp. (in Russian) | MR
[6] Gardner B. J., Wiegandt R., Radical Theory of Rings, Marcel Dekker, New York, 2004, 408 pp. | DOI | MR | Zbl
[7] Herstein I. N., Nekommutativnye kol'ca [Noncommutative Rings], Mir, Moscow, 1972, 190 pp. (in Russian)
[8] Jacobson N., Stroenie kolec [Structure of Rings], Izdat. Inostran. Liter., Moscow, 1961, 392 pp. (in Russian) | MR
[9] Kalicki J., Scott D., “Equational completness of abstract algebras”, Indag. Math., 17 (1955), 650–659 | DOI | MR
[10] Kornev A. I., “Complete radicals of some group rings”, Sib. Math. J., 48 (2007), 857–862 | DOI | MR | Zbl
[11] Kornev A. I., Pavlova T. V., “Characterization of one radical of group rings over finite prime fields”, Sib. Math. J., 45 (2004), 504–512 | DOI | MR | Zbl
[12] Kornev A. I., Pavlova T. V., “Finite complete associative rings”, Matematika i Informatika: Nauka i Obrazovanie: collection of works, v. 1, OmGPU, Omsk, 2002, 43–45 (in Russian)
[13] Kurosh A. G., “Radicals in the group theory”, Sib. Mat. Zh., 3:6 (1962), 912–931 (in Russian) | MR | Zbl
[14] Lidl R., Niederreiter G., Konechnye polya [Finite Fields], v. 1, Mir, Moscow, 1988, 430 pp. (in Russian) | MR | Zbl
[15] Mal'tsev A. I., “Multiplication of classes of algebraic systems”, Sib. Math. J., 8:2 (1967), 254–267 | DOI
[16] Martynov L. M., “On notions of completeness, solvability, primarity, reducibility and purity for arbitrary algebras”, Int. Conf. on Modern Algebra and Its Applications (Vanderbilt University, Tennessee, May 14–18, 1996. Schudule and Abstracts, Nashville, 1996, 79–80
[17] Martynov L. M., “On concepts of completeness, reducibility, primarity, and purity for arbitrary algebras”, Universal Algebra and its Applications: collection of works. Volgograd, September 6–11, 1999, Peremena, Volgograd, 2000, 179–190 (in Russian)
[18] Martynov L. M., “One radical algebras with a property of transversality by minimal varieties”, Herald of Omsk University, 2 (2004), 19—21 (in Russian) https://elib.omsu.ru/issues/124/5973.php
[19] Martynov L. M., “Completeness, reducibility, primarity and purity for algebras: results and problems”, Sib. Èlektron. Mat. Izv., 13 (2016), 181–241 (in Russian) | DOI | MR | Zbl
[20] Martynov L. M., “On the complete radical of a monoid ring”, Herald of Omsk University, 84:2 (2017), 8–13
[21] Martynov L. M., “About one modification of concepts of completely, reducibility, periodicity and primarity for associative rings”, Herald of Omsk University, 26:2 (2021), 12–22 | DOI
[22] Martynov L. M., Pavlova T. V., “On minimally complete associative rings”, Herald of Omsk University, 79:1 (2016), 6–13 (in Russian) | MR
[23] Martynov L. M., Pavlova T. V., “Letter to the editor”, Herald of Omsk University, 24:2 (2019), 23–24 (in Russian)
[24] Pavlova T. V., “Complete radical of full ring of matrices over an arbitrary ring”, Matematika i Informatika: Nauka i Obrazovanie: collection of works, v. 10, OmGPU, Omsk, 2011, 16–19 (in Russian)
[25] Pavlova T. V., “On Artinian rings with a split-off complete radical”, Herald of Omsk University, 23:4 (2018), 37–43 (in Russian) | MR
[26] Pavlova T. V., “Complete associative Artinian rings”, Herald of Omsk University, 1 (2005), 17–19 (in Russian)
[27] Pavlova T. V., “On reduced associative Artinian rings”, Problemy i perspektivy fiz-mat. i tekhn. obrazovaniya: collection of works, Filial TyumGU v Ishime, Ishim, 2014, 40–46 (in Russian)
[28] Pavlova T. V., “Minimally complete associative Artinian rings”, Sib. Èlektron. Mat. Izv., 14 (2017), 1238–1247 (in Russian) | DOI | MR | Zbl
[29] Pavlova T. V., “Corrigendum: Minimally complete associative Artinian rings”, Sib. Èlektron. Mat. Izv., 16 (2019), 1913–1915 (in Russian) | DOI | MR | Zbl
[30] Shevrin L. N., Martynov L. M., “Attainable classes of algebras”, Siberian Math. J., 12:6 (1971), 986–998 | DOI | MR
[31] Ševrin L. N., Martynov L. M., “Attainability and solvability for classes of algebras”, Semigroups, v. 39eds. . J. Bolyai, G. Poliak, St. Schwarz, O. Steinfeld, Amsterdam, Oxford, New York, 1985, 397–459 | MR
[32] Wilson R. S., “On structure of finite rings. II”, Pasific J. Math., 51:1 (1974), 317–325 | DOI | MR