Pricing powered $\alpha$-power Quanto options with and without Poisson jumps
Ural mathematical journal, Tome 10 (2024) no. 1, pp. 61-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the problem of Black–Scholes pricing for the Quanto option pricing with power type powered and powered payoff underlying foreign currency is driven by Brownian motion and Poisson jumps, via risk-neutral probability measure. Our approach in this work is probabilistic, based on Feynman–Kac formula.
Keywords: Financial derivatives, Power payoff, Risk-neutral dynamics
Mots-clés : Quanto option
@article{UMJ_2024_10_1_a4,
     author = {Javed Hussain and Nisar Ali},
     title = {Pricing powered $\alpha$-power {Quanto} options with and without {Poisson} jumps},
     journal = {Ural mathematical journal},
     pages = {61--67},
     year = {2024},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a4/}
}
TY  - JOUR
AU  - Javed Hussain
AU  - Nisar Ali
TI  - Pricing powered $\alpha$-power Quanto options with and without Poisson jumps
JO  - Ural mathematical journal
PY  - 2024
SP  - 61
EP  - 67
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a4/
LA  - en
ID  - UMJ_2024_10_1_a4
ER  - 
%0 Journal Article
%A Javed Hussain
%A Nisar Ali
%T Pricing powered $\alpha$-power Quanto options with and without Poisson jumps
%J Ural mathematical journal
%D 2024
%P 61-67
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a4/
%G en
%F UMJ_2024_10_1_a4
Javed Hussain; Nisar Ali. Pricing powered $\alpha$-power Quanto options with and without Poisson jumps. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 61-67. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a4/

[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. Political Economy, 81:3 (1973), 637–654 http://www.jstor.org/stable/1831029 | DOI | MR | Zbl

[2] Capiński M., Kopp E., Traple J., Stochastic Calculus for Finance, Cambridge University Press, Cambridge, UK, 2012, 186 pp. | MR | Zbl

[3] Derman E., Kani I., “Stochastic implied trees: arbitrage pricing with stochastic term and strike structure of volatility”, Int. J. Theor. Appl. Finance, 1:1 (1998), 61–110 | DOI | Zbl

[4] Dupire B., “Pricing with a smile”, Risk, 7 (1994), 18–20

[5] Lee Y., Yoo H.-S., Lee J., “Pricing formula for power Quanto options with each type of payoffs at maturity”, Global J. Pure Appl. Math., 13:9 (2017), 6695–6702 | MR

[6] Teng L., Ehrhardt M., Günther M., “The pricing of Quanto options under dynamic correlation”, J. Comput. Appl. Math., 275 (2015), 304–310 | DOI | MR | Zbl