@article{UMJ_2024_10_1_a3,
author = {G\'abor Cz\'edli},
title = {Sperner theorems for unrelated copies of posets and generating distributive lattices},
journal = {Ural mathematical journal},
pages = {44--60},
year = {2024},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a3/}
}
Gábor Czédli. Sperner theorems for unrelated copies of posets and generating distributive lattices. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 44-60. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a3/
[1] Czédli G., “Four-generated direct powers of partition lattices and authentication”, Publ. Math. Debrecen, 99 (2021), 447–472 | DOI | MR | Zbl
[2] Czédli G., “Generating some large filters of quasiorder lattices”, Acta Sci. Math. (Szeged), 2024 | DOI
[3] Czédli G., Generating Boolean lattices by few elements and exchanging session keys, 2023 14 p., arXiv: [math.RA] 2303.10790v3
[4] Czédli G., “Generating the powers of a Boolean lattice with an extra 0”, Algebra and Model Theory 14: Proc. Internat. Conf., Novosibirsk—Erlagol, Novosibirsk State Technical University, Novosibirsk, 2023, 25–40
[5] Czédli G., “Minimum-sized generating sets of the direct powers of free distributive lattices”, Cubo, 26:2 (2024), 217–237 | DOI
[6] Dove A. P., Griggs J. R., “Packing posets in the Boolean lattice”, Order, 32 (2015), 429–438 | DOI | MR | Zbl
[7] Gelfand I. M., Ponomarev V. A., “Problems of linear algebra and classification of quadruples of subspaces in a finite dimensional vector space”, Hilbert Space Operators and Operator Algebras: Proc. Internat. Conf., Tihany, 1970, v. 5, Colloq. Math. Soc. János Bolyai, North-Holland Publishing, Amsterdam–London, 1972, 163–237 | MR
[8] Grätzer G., Lattice Theory: Foundation, Birkhäuser, Basel, 2011, XXX+614 pp. | DOI | MR | Zbl
[9] Griggs J. R., Stahl J., Trotter W. T. Jr., “A Sperner theorem on unrelated chains of subsets”, J. Combinatorial Theory Ser. A, 36:1 (1984), 124–127 | DOI | MR | Zbl
[10] Katona G. O. H., Nagy D. T., “Incomparable copies of a poset in the Boolean lattice”, Order, 32 (2015), 419–427 | DOI | MR | Zbl
[11] Lubell D., “A short proof of Sperner's lemma.”, J. Combinatorial Theory, 1:2 (1966), 299 | DOI | MR | Zbl
[12] McKenzie. R. N., McNulty G. F., Taylor W. F., Algebras, Lattices, Varieties. I., Wadsworth $\$ Brooks/Cole, Monterey, California, 1987, XII+361 pp. | DOI | MR | Zbl
[13] Sperner E., “Ein Satz über Untermengen einer endlichen Menge”, Math. Z., 27 (1928), 544–548 (in German) | DOI | MR
[14] Zádori L., “Subspace lattices of finite vector spaces are 5-generated”, Acta Sci. Math. (Szeged), 74:3 (2008), 493–499 | MR | Zbl