On a group extension involving the sporadic Janko group $J_{2}$
Ural mathematical journal, Tome 10 (2024) no. 1, pp. 28-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to the electronic Atlas [23], the group $J_{2}$ has an absolutely irreducible module of dimension 6 over $\mathbb{F}_{4}.$ Therefore, a split extension group having the form $4^{6}{:}J_{2}:= \overline{G}$ exists. In this paper, we consider this group. Our purpose is to determine its conjugacy classes and character table using the methods of the coset analysis together with Clifford–Fischer theory. We determine the inertia factors of $\overline{G}$ by analyzing the maximal subgroups of $J_{2}$ and the maximal of the maximal subgroups of $J_{2}$ together with other various information. It turns out that the character table of $\overline{G}$ is a $53 \times 53$ real-valued matrix, while Fischer matrices of the extension are all integer-valued matrices with sizes ranging from 1 to 8.
Keywords: Inertia groups, Character table
Mots-clés : Group extensions, Janko sporadic simple group, Fischer matrices
@article{UMJ_2024_10_1_a2,
     author = {Ayoub B.M. Basheer},
     title = {On a group extension involving the sporadic {Janko} group $J_{2}$},
     journal = {Ural mathematical journal},
     pages = {28--43},
     year = {2024},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a2/}
}
TY  - JOUR
AU  - Ayoub B.M. Basheer
TI  - On a group extension involving the sporadic Janko group $J_{2}$
JO  - Ural mathematical journal
PY  - 2024
SP  - 28
EP  - 43
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a2/
LA  - en
ID  - UMJ_2024_10_1_a2
ER  - 
%0 Journal Article
%A Ayoub B.M. Basheer
%T On a group extension involving the sporadic Janko group $J_{2}$
%J Ural mathematical journal
%D 2024
%P 28-43
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a2/
%G en
%F UMJ_2024_10_1_a2
Ayoub B.M. Basheer. On a group extension involving the sporadic Janko group $J_{2}$. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 28-43. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a2/

[1] Ali F., Moori J., “The Fischer–Clifford matrices and character table of a maximal subgroup of $Fi_{24}$”, Algebra Colloq., 17:3 (2010), 389–414 | DOI | MR | Zbl

[2] Basheer A. B. M., Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012

[3] Basheer A. B. M., “On a group involving the automorphism of the Janko group $J_{2}$”, J. Indones. Math. Soc., 29:2 (2023), 197–216 | DOI | MR | Zbl

[4] Basheer A. B. M., “On a group extension involving the Suzuki group $Sz(8)$”, Afr. Mat., 34:4 (2023), 96 | DOI | MR | Zbl

[5] Basheer A. B. M., Moori J., “Fischer matrices of Dempwolff group $2^{5}{^{\cdot}}GL(5,2)$.”, Int. J. Group Theory, 1:4 (2012), 43–63 | DOI | MR | Zbl

[6] Basheer A. B. M., Moori J., “On the non-split extension group $2^{6}{^{\cdot}}Sp(6,2)$”, Bull. Iranian Math. Soc., 39:6 (2013), 1189–1212 | MR | Zbl

[7] Basheer A. B. M.,Moori J., “On the non-split extension $2^{2n}{^{\cdot}}Sp(2n,2)$”, Bull. Iranian Math. Soc., 41:2 (2015), 499–518 | MR | Zbl

[8] Basheer A. B. M., Moori J., “On a maximal subgroup of the Thompson simple group”, Math. Commun., 20:2 (2015), 201–218 https://hrcak.srce.hr/149786 | MR | Zbl

[9] Basheer A. B. M., Moori J., “A survey on Clifford-Fischer theory”, Groups St Andrews 2013, v. 422, London Math. Soc. Lecture Note Ser., eds. C.M. Campbell, M.R. Quick, E.F. Robertson, C.M. Roney-Dougal, Cambridge University Press, 2015, 160–172 | DOI | MR | Zbl

[10] Basheer A. B. M., Moori J., “On a group of the form $3^{7}{:}Sp(6,2)$”, Int. J. Group Theory, 5:2 (2016), 41–59 | DOI | MR | Zbl

[11] Basheer A. B. M., Moori J., “On two groups of the form $2^{8}{:}A_{9}$”, Afr. Mat., 28 (2017), 1011–1032 | DOI | MR | Zbl

[12] Basheer A. B. M., Moori J., “On a group of the form $2^{10}{:}(U_{5}(2){:}2)$”, Ital. J. Pure Appl. Math., 37 (2017), 645–658 https://ijpam.uniud.it/online_issue/201737/57-BasheerMoori.pdf | MR

[13] Basheer A. B. M., Moori J., “Clifford-Fischer theory applied to a group of the form $2^{1+6}_{-}{:}((3^{1+2}{:}8){:}2)$”, Bull. Iranian Math. Soc., 43:1 (2017), 41–52 | MR | Zbl

[14] Basheer A. B. M., Moori J., “On a maximal subgroup of the affine general linear group $GL(6,2)$”, Adv. Group Theory Appl., 11 (2021), 1–30 | DOI | MR | Zbl

[15] Bosma W., Cannon J. J., Handbook of Magma Functions, University of Sydney, Sydney, 1994

[16] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985, 250 pp. | MR | Zbl

[17] Fray R. L., Monaledi R. L., Prins A. L., “Fischer–Clifford matrices of $2^{8}{:}(U_{4}(2){:}2)$ as a subgroup of $O^{+}_{10}(2)$”, Afr. Mat., 27 (2016), 1295–1310 | DOI | MR | Zbl

[18] GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Version 4.4.10, 2007 http://www.gap-system.org

[19] eprint Maxima, A Computer Algebra System Version 5.18.1, 2009 http://maxima.sourceforge.net

[20] Moori J., On the Groups $G^{+}$ and $\overline{G}$ of the form $2^{10}{:}M_{22}$ and $2^{10}{:}\overline{M}_{22}$, PhD Thesis, University of Birmingham, Birmingham, 1975

[21] Moori J., “On certain groups associated with the smallest Fischer group”, J. London Math. Soc., 2 (1981), 61–67 | DOI | MR

[22] Wilson R. A., The Finite Simple Groups, Springer-Verlag, London, 2009, XV, 298 pp. | DOI | MR | Zbl

[23] Wilson R. A., et al., Atlas of Finite Group Representations, Version 3 http://brauer.maths.qmul.ac.uk/Atlas/v3/