Mots-clés : Group extensions, Janko sporadic simple group, Fischer matrices
@article{UMJ_2024_10_1_a2,
author = {Ayoub B.M. Basheer},
title = {On a group extension involving the sporadic {Janko} group $J_{2}$},
journal = {Ural mathematical journal},
pages = {28--43},
year = {2024},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a2/}
}
Ayoub B.M. Basheer. On a group extension involving the sporadic Janko group $J_{2}$. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 28-43. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a2/
[1] Ali F., Moori J., “The Fischer–Clifford matrices and character table of a maximal subgroup of $Fi_{24}$”, Algebra Colloq., 17:3 (2010), 389–414 | DOI | MR | Zbl
[2] Basheer A. B. M., Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012
[3] Basheer A. B. M., “On a group involving the automorphism of the Janko group $J_{2}$”, J. Indones. Math. Soc., 29:2 (2023), 197–216 | DOI | MR | Zbl
[4] Basheer A. B. M., “On a group extension involving the Suzuki group $Sz(8)$”, Afr. Mat., 34:4 (2023), 96 | DOI | MR | Zbl
[5] Basheer A. B. M., Moori J., “Fischer matrices of Dempwolff group $2^{5}{^{\cdot}}GL(5,2)$.”, Int. J. Group Theory, 1:4 (2012), 43–63 | DOI | MR | Zbl
[6] Basheer A. B. M., Moori J., “On the non-split extension group $2^{6}{^{\cdot}}Sp(6,2)$”, Bull. Iranian Math. Soc., 39:6 (2013), 1189–1212 | MR | Zbl
[7] Basheer A. B. M.,Moori J., “On the non-split extension $2^{2n}{^{\cdot}}Sp(2n,2)$”, Bull. Iranian Math. Soc., 41:2 (2015), 499–518 | MR | Zbl
[8] Basheer A. B. M., Moori J., “On a maximal subgroup of the Thompson simple group”, Math. Commun., 20:2 (2015), 201–218 https://hrcak.srce.hr/149786 | MR | Zbl
[9] Basheer A. B. M., Moori J., “A survey on Clifford-Fischer theory”, Groups St Andrews 2013, v. 422, London Math. Soc. Lecture Note Ser., eds. C.M. Campbell, M.R. Quick, E.F. Robertson, C.M. Roney-Dougal, Cambridge University Press, 2015, 160–172 | DOI | MR | Zbl
[10] Basheer A. B. M., Moori J., “On a group of the form $3^{7}{:}Sp(6,2)$”, Int. J. Group Theory, 5:2 (2016), 41–59 | DOI | MR | Zbl
[11] Basheer A. B. M., Moori J., “On two groups of the form $2^{8}{:}A_{9}$”, Afr. Mat., 28 (2017), 1011–1032 | DOI | MR | Zbl
[12] Basheer A. B. M., Moori J., “On a group of the form $2^{10}{:}(U_{5}(2){:}2)$”, Ital. J. Pure Appl. Math., 37 (2017), 645–658 https://ijpam.uniud.it/online_issue/201737/57-BasheerMoori.pdf | MR
[13] Basheer A. B. M., Moori J., “Clifford-Fischer theory applied to a group of the form $2^{1+6}_{-}{:}((3^{1+2}{:}8){:}2)$”, Bull. Iranian Math. Soc., 43:1 (2017), 41–52 | MR | Zbl
[14] Basheer A. B. M., Moori J., “On a maximal subgroup of the affine general linear group $GL(6,2)$”, Adv. Group Theory Appl., 11 (2021), 1–30 | DOI | MR | Zbl
[15] Bosma W., Cannon J. J., Handbook of Magma Functions, University of Sydney, Sydney, 1994
[16] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985, 250 pp. | MR | Zbl
[17] Fray R. L., Monaledi R. L., Prins A. L., “Fischer–Clifford matrices of $2^{8}{:}(U_{4}(2){:}2)$ as a subgroup of $O^{+}_{10}(2)$”, Afr. Mat., 27 (2016), 1295–1310 | DOI | MR | Zbl
[18] GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Version 4.4.10, 2007 http://www.gap-system.org
[19] eprint Maxima, A Computer Algebra System Version 5.18.1, 2009 http://maxima.sourceforge.net
[20] Moori J., On the Groups $G^{+}$ and $\overline{G}$ of the form $2^{10}{:}M_{22}$ and $2^{10}{:}\overline{M}_{22}$, PhD Thesis, University of Birmingham, Birmingham, 1975
[21] Moori J., “On certain groups associated with the smallest Fischer group”, J. London Math. Soc., 2 (1981), 61–67 | DOI | MR
[22] Wilson R. A., The Finite Simple Groups, Springer-Verlag, London, 2009, XV, 298 pp. | DOI | MR | Zbl
[23] Wilson R. A., et al., Atlas of Finite Group Representations, Version 3 http://brauer.maths.qmul.ac.uk/Atlas/v3/