Mots-clés : Antipodal cover
@article{UMJ_2024_10_1_a12,
author = {Ludmila Yu. Tsiovkina},
title = {On $G$-vertex-transitive covers of complete graphs having at most two $G$-orbits on the arc set},
journal = {Ural mathematical journal},
pages = {147--158},
year = {2024},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a12/}
}
TY - JOUR AU - Ludmila Yu. Tsiovkina TI - On $G$-vertex-transitive covers of complete graphs having at most two $G$-orbits on the arc set JO - Ural mathematical journal PY - 2024 SP - 147 EP - 158 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a12/ LA - en ID - UMJ_2024_10_1_a12 ER -
Ludmila Yu. Tsiovkina. On $G$-vertex-transitive covers of complete graphs having at most two $G$-orbits on the arc set. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 147-158. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a12/
[1] Aschbacher M., Finite Group Theory, 2nd, Cambridge University Press, Cambridge, 2000, 305 pp. | DOI | MR | Zbl
[2] Berggren J. L., “An algebraic characterization of finite symmetric tournaments”, Bull. Austral. Math. Soc., 6:1 (1972), 53–59 | DOI | MR | Zbl
[3] Brouwer A. E., Cohen A. M., Neumaier A., Distance–Regular Graphs, Springer–Verlag, Berlin etc., 1989, 494 pp. | DOI | MR | Zbl
[4] Brouwer A. E., Van Maldeghem H., Strongly Regular Graphs, Cambridge, Cambridge University Press, 2022, 462 pp. | DOI | MR | Zbl
[5] Chen G., Ponomarenko I., Lecture Notes on Coherent Configurations, 2023, 356 pp. https://www.pdmi.ras.ru/~ inp/ccNOTES.pdf
[6] Coutinho G., Godsil C., Shirazi M., Zhan H., “Equiangular lines and covers of the complete graph”, Lin. Alg. Appl., 488 (2016), 264–283 | DOI | MR | Zbl
[7] Coutts H. J., Quick M. R., Roney-Dougal C. M., “The primitive groups of degree less than $4096$”, Comm. Algebra, 39 (2011), 3526–3546 | DOI | MR | Zbl
[8] Devillers A., Giudici M., Li C.H., Pearce G., Praeger Ch. E., “On imprimitive rank 3 permutation groups”, J. London Math. Soc., 84 (2011), 649–669 | DOI | MR | Zbl
[9] Godsil C. D., Hensel A. D., “Distance regular covers of the complete graph”, J. Comb. Theory Ser. B., 56:1 (1992), 205–238 | DOI | MR | Zbl
[10] Godsil C. D., Liebler R. A., Praeger C. E., “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl
[11] Jones W., Parshall B., “On the $1$-cohomology of finite groups of Lie type”, Proc. Conf. on Finite Groups, eds. W.R. Scott, F. Gross, Academic Press, New York, 1976, 313–327 | DOI | MR
[12] Tsiovkina L. Yu., “Covers of complete graphs and related association schemes”, J. Comb. Theory Ser. A., 191 (2022), 105646 | DOI | MR | Zbl
[13] Tsiovkina L. Yu., “On a class of edge-transitive distance-regular antipodal covers of complete graphs”, Ural Math. J., 7:2 (2021), 136–158 | DOI | MR | Zbl
[14] Tsiovkina L. Yu., “Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter 3 in affine case”, Sib. Èlektron. Mat. Izv., 17 (2020), 445–495 (in Russian) | DOI | MR | Zbl
[15] Tsiovkina L. Yu., “On a class of vertex-transitive distance-regular covers of complete graphs”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 758–781 (in Russian) | DOI | MR | Zbl
[16] Tsiovkina L. Yu., “On a class of vertex-transitive distance-regular covers of complete graphs II”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 348–359 (in Russian) | DOI | MR | Zbl
[17] Tsiovkina L. Yu., “On some vertex-transitive distance-regular antipodal covers of complete graphs”, Ural Math. J., 8:2 (2022), 162–176 | DOI | MR | Zbl
[18] Wilson R. A., The Finite Simple Groups, v. 251, Grad. Texts in Math., Springer—Verlag, London, 2009, 298 pp. | DOI | MR | Zbl