@article{UMJ_2024_10_1_a11,
author = {Ksenia Rizhenko},
title = {Improved first player strategy for the zero-sum sequential uncrossing game},
journal = {Ural mathematical journal},
pages = {136--146},
year = {2024},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a11/}
}
Ksenia Rizhenko. Improved first player strategy for the zero-sum sequential uncrossing game. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 136-146. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a11/
[1] Cecchetto F., Traub V., Zenklusen R., “Better-than-${4}/{3}$-approximations for leaf-to-leaf tree and connectivity augmentation”, Math. Program., 2023, 1–23 | DOI | MR
[2] Karzanov A. V., “How to tidy up a symmetric set-system by use of uncrossing operations”, Theor. Comput. Sci., 157:2 (1996), 215–225 | DOI | MR | Zbl
[3] Khachay M.Yu., Neznakhina E.D., Ryzhenko K.V., “Constant-factor approximation algorithms for a series of combinatorial routing problems based on the reduction to the asymmetric traveling salesman problem”, Proc. Steklov Inst. Math., 319:Suppl. 1 (2022), S140–S155 | DOI | MR | Zbl
[4] Kortsarz G., Nutov Z., “{LP}-relaxations for tree augmentation”, Discr. Appl. Math., 239 (2018), 94–105 | DOI | MR | Zbl
[5] Maduel Y., Nutov Z., “Covering a laminar family by leaf to leaf links”, Discr. Appl. Math., 158:13 (2010), 1424–1432 | DOI | MR | Zbl
[6] Neznakhina E. D., Ogorodnikov Yu. Yu., Rizhenko K. V., Khachay M. Yu., “Approximation algorithms with constant factors for a series of asymmetric routing problems”, Dokl. Math., 108:3 (2023), 499–505 | DOI | MR
[7] Rizhenko K., Neznakhina K., Khachay M., “Fixed ratio polynomial time approximation algorithm for the prize-collecting asymmentric traveling salesman problem”, Ural Math. J., 9:1 (2023), 135–146 | DOI | MR
[8] Schrijver A., Combinatorial Optimization. Polyhedra and Efficiency, Springer, Berlin, Heidelberg, 2003, 1879 pp. https://link.springer.com/book/9783540443896 | MR | Zbl
[9] Svensson O., Tarnawski J., Végh L., “A constant-factor approximation algorithm for the asymmetric traveling salesman problem”, J. ACM., 67:6 (2020), 37, 1–53 | DOI | MR
[10] Traub V., Vygen J., “An improved approximation algorithm for the asymmetric traveling salesman problem”, SIAM J. on Comput., 51:1 (2022), 139–173 | DOI | MR | Zbl