Mots-clés : Error term
@article{UMJ_2024_10_1_a1,
author = {Abdugani Kh. Abdullaev and Abdulla A. Azamov and Marks B. Ruziboev},
title = {An explicit estimate for approximate solutions of {ODEs} based on the {Taylor} formula},
journal = {Ural mathematical journal},
pages = {18--27},
year = {2024},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a1/}
}
TY - JOUR AU - Abdugani Kh. Abdullaev AU - Abdulla A. Azamov AU - Marks B. Ruziboev TI - An explicit estimate for approximate solutions of ODEs based on the Taylor formula JO - Ural mathematical journal PY - 2024 SP - 18 EP - 27 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a1/ LA - en ID - UMJ_2024_10_1_a1 ER -
%0 Journal Article %A Abdugani Kh. Abdullaev %A Abdulla A. Azamov %A Marks B. Ruziboev %T An explicit estimate for approximate solutions of ODEs based on the Taylor formula %J Ural mathematical journal %D 2024 %P 18-27 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a1/ %G en %F UMJ_2024_10_1_a1
Abdugani Kh. Abdullaev; Abdulla A. Azamov; Marks B. Ruziboev. An explicit estimate for approximate solutions of ODEs based on the Taylor formula. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 18-27. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a1/
[1] Azamov A. A., Abdullaev A. X., Tilavov A. M., “On the derivation of an inequality for estimating the accuracy of an approximate solution to the initial value problem”, Bull. Inst. Math., 5:5 (2022), 105–111
[2] Babenko K. I., Foundations of Numerical Analysis [Osnovy chislennogo analiza], 2nd, Regulyarnaya i haoticheskaya dinamika, Moscow, Izhevck, 200, 848 pp. (in Russian)
[3] Bakhvalov N. S., Numerical Methods (Analysis, Algebra, Ordinary Differential Equations) [CHislennye metody (analiz, algebra, obyknovennye differencial'nye uravneniya)], Nauka, Moscow, 1975, 632 pp. | MR
[4] Berezin I. S., Zhidkov P. N., Computing Methods, v. 2, Pergamon Press, 1965, 464 pp. | MR | Zbl
[5] Bieberbach L., “On the remainder of the Runge–Kutta formula in the theory of ordinary differential equations”, J. Appl. Math. Phys. (ZAMP), 2 (1951), 233–248 (in German) | DOI | MR | Zbl
[6] Brenan K. E., Campbell S. L., Petzold L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1995, XII+251 pp. | DOI | MR
[7] Buchberger B., Collins G. E., Loos R., Albrecht R., Computer Algebra: Symbolic and Algebraic Computation, Springer, Vienna, 1983, VII+283 pp. | DOI | MR
[8] Butcher J. C., Numerical Methods for Ordinary Differential Equations, 3rd, John Wiley Sons Ltd., United Kingdom, 2016, 544 pp. | MR | Zbl
[9] Cartan H., Formes Différentielles, Hermann Paris, 1967, 190 pp. (in French) | MR
[10] Hairer E., Norsett S., Wanner G., Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd, Springer, Berlin, Heidelberg, 2008, XV+528 pp. | DOI | MR
[11] Hartman P., Ordinary Differential Equation, SIAM, 2002, XVIII+624 pp. | DOI | MR
[12] Gathen J., Gerhard J., Modern Computer Algebra, 3rd, Cambridge University Press, 2013, 796 pp. | DOI | MR | Zbl
[13] Geddes K. O., Czapor S. R., Labahn G., Algorithms for Computer Algebra, Springer, NY, 2007, XXII+586 pp. | DOI | MR
[14] Kendall A. E., An Introduction to Numerical Analysis, 2nd, John Wiley Sons, Inc., 1989, 693 pp. | MR | Zbl
[15] Krilov V. I., Bobkov V. V., Monastirniy P. I., Computational Methods [Vychislitel'nye metody], v. II, Nauka, Moscow, 1977, 399 pp. (in Russian)
[16] Lambert J. D., Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, Wiley, 1992, 304 pp. | MR
[17] Milne W. E., Numerical Calculus, Princeton University Press, 1949, 404 pp. | MR
[18] Milne W. E., “The Remainder in linear methods of approximation”, J. Res. Nat. Bur. Stand., 43 (1949), RP2401, 501–511 | DOI | MR