A characterization of Meixner orthogonal polynomials via a certain transfert operator
Ural mathematical journal, Tome 10 (2024) no. 1, pp. 4-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we consider a certain transfert operator $\mathrm{M}_{(c,\omega)}=I_{\mathcal{P}}-c \, \tau_{\omega},$ $\omega\neq0,$ ${c \in \mathbb{R}-\{0,1\},}$ and we prove the following statement: up to an affine transformation, the only orthogonal sequence that remains orthogonal after application of this transfert operator is the Meixner polynomials of the first kind.
Keywords: Regular form, Meixner polynomials, Divided-difference operator, Transfert operator, Hahn property.
Mots-clés : Orthogonal polynomials
@article{UMJ_2024_10_1_a0,
     author = {Emna Abassi and Lotfi Kh\'eriji},
     title = {A characterization of {Meixner} orthogonal  polynomials via a certain transfert operator},
     journal = {Ural mathematical journal},
     pages = {4--17},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/}
}
TY  - JOUR
AU  - Emna Abassi
AU  - Lotfi Khériji
TI  - A characterization of Meixner orthogonal  polynomials via a certain transfert operator
JO  - Ural mathematical journal
PY  - 2024
SP  - 4
EP  - 17
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/
LA  - en
ID  - UMJ_2024_10_1_a0
ER  - 
%0 Journal Article
%A Emna Abassi
%A Lotfi Khériji
%T A characterization of Meixner orthogonal  polynomials via a certain transfert operator
%J Ural mathematical journal
%D 2024
%P 4-17
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/
%G en
%F UMJ_2024_10_1_a0
Emna Abassi; Lotfi Khériji. A characterization of Meixner orthogonal  polynomials via a certain transfert operator. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 4-17. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/