A characterization of Meixner orthogonal polynomials via a certain transfert operator
Ural mathematical journal, Tome 10 (2024) no. 1, pp. 4-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Here we consider a certain transfert operator $\mathrm{M}_{(c,\omega)}=I_{\mathcal{P}}-c \, \tau_{\omega},$ $\omega\neq0,$ ${c \in \mathbb{R}-\{0,1\},}$ and we prove the following statement: up to an affine transformation, the only orthogonal sequence that remains orthogonal after application of this transfert operator is the Meixner polynomials of the first kind.
Keywords: Regular form, Meixner polynomials, Divided-difference operator, Transfert operator, Hahn property.
Mots-clés : Orthogonal polynomials
@article{UMJ_2024_10_1_a0,
     author = {Emna Abassi and Lotfi Kh\'eriji},
     title = {A characterization of {Meixner} orthogonal polynomials via a certain transfert operator},
     journal = {Ural mathematical journal},
     pages = {4--17},
     year = {2024},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/}
}
TY  - JOUR
AU  - Emna Abassi
AU  - Lotfi Khériji
TI  - A characterization of Meixner orthogonal polynomials via a certain transfert operator
JO  - Ural mathematical journal
PY  - 2024
SP  - 4
EP  - 17
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/
LA  - en
ID  - UMJ_2024_10_1_a0
ER  - 
%0 Journal Article
%A Emna Abassi
%A Lotfi Khériji
%T A characterization of Meixner orthogonal polynomials via a certain transfert operator
%J Ural mathematical journal
%D 2024
%P 4-17
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/
%G en
%F UMJ_2024_10_1_a0
Emna Abassi; Lotfi Khériji. A characterization of Meixner orthogonal polynomials via a certain transfert operator. Ural mathematical journal, Tome 10 (2024) no. 1, pp. 4-17. http://geodesic.mathdoc.fr/item/UMJ_2024_10_1_a0/

[1] Abdelkarim F., Maroni P., “The $D_{\omega}$-classical orthogonal polynomials”, Results. Math., 32:1–2 (1997), 1–28 | DOI | MR | Zbl

[2] Aloui B., “Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising operator”, Ramanujan J., 45:2 (2018), 475–481 | DOI | MR | Zbl

[3] Aloui B., “Chebyshev polynomials of the second kind via raising operator preserving the orthogonality”, Period. Math. Hung., 76:1 (2018), 126–132 | DOI | MR | Zbl

[4] Aloui B., Chammam W., “Classical orthogonal polynomials and some new properties for their centroids of zeroes”, Anal. Math., 46:1 (2020), 13–23 | DOI | MR | Zbl

[5] Aloui B., Souissi J., “Characterization of $q$-Dunkl-classical symmetric orthogonal $q$-polynomials”, Ramanujan J., 57:4 (2021), 1355–1365 | DOI | MR

[6] Ben Salah I., Ghressi A., Khériji L., “A characterization of symmetric $T_{\mu}$-classical monic orthogonal polynomials by a structure relation”, Integral Transforms Spec. Funct., 25:6 (2014), 423–432 | DOI | MR | Zbl

[7] Bouanani A., Khériji L., Ihsen Tounsi M., “Characterization of $q$-Dunkl Appell symmetric orthogonal $q$-polynomials”, Expo. Math., 28:4 (2010), 325–336 | DOI | MR | Zbl

[8] Bouras B., Habbachi Y., Marcellán F., “Rodrigues formula and recurrence coefficients for non-symmetric Dunkl-classical orthogonal polynomials”, Ramanujan J., 56:2 (2021), 451–466 | DOI | MR | Zbl

[9] Chaggara H., “Operational rules and a generalized Hermite polynomials”, J. Math. Anal. Appl., 332:1 (2007), 11–21 | DOI | MR | Zbl

[10] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978, 249 pp. | MR | Zbl

[11] Ghressi A., Khériji L., “A new characterization of the generalized Hermite linear form”, Bull. Belg. Math. Soc. Simon Stevin., 15:3 (2008), 561–567 | DOI | MR | Zbl

[12] Ghressi A., Khériji L., “Integral and discrete representations of certain Brenke type orthogonal $q$-polynomials”, Ramanujan J., 30:2 (2013), 163–171 | DOI | MR | Zbl

[13] Habbachi Y., “A new characterization of symmetric Dunkl and $q$-Dunkl orthogonal polynomials”, Ural Math. J., 9:2 (2023), 109–120 | DOI | MR

[14] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71:1 (2002), 49–115 | DOI | MR

[15] Khériji L., Maroni P., “On the natural $q$-analogues of the classical orthogonal polynomials”, Eurasian Math. J., 4:2 (2013), 82–103 | MR

[16] Koekoek R., Swarttouw R. F., The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its $q$-Analogue., Rep. Fac. Tech. Math. Inf., Delft University of Technology, The Netherlands. Report 98—17, TU Delft, Delft, 1998, 168 pp.

[17] Koornwinder T. H., “Lowering and raising operators for some special orthogonal polynomials”, Jack, Hall-Littlewood and Macdonald Polynomials, v. 417, Contemp. Math., AMS, Providence, RI, 2006, 227–238 | DOI | MR | Zbl

[18] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications, v. 9, IMACS Ann. Comput. Appl. Math., eds. C. Brezinski et al., 1991, 95–130 (in French) | MR | Zbl

[19] Maroni P., “Variations around classical orthogonal polynomials. Connected problems.”, J. Comput. Appl. Math., 48:1–2 (1993), 133–155 | DOI | MR | Zbl

[20] Maroni P., Mejri M., “The $I_{(q,\omega)}$-classical orthogonal polynomials”, Appl. Numer. Math., 43:4 (2002), 423–458 | DOI | MR | Zbl

[21] Srivastava H. M., Ben Cheikh Y., “Orthogonality of some polynomial sets via quasi-monomiality”, Appl. Math. Comput., 141:2–3 (2003), 415–425 | DOI | MR | Zbl