@article{UMJ_2023_9_2_a9,
author = {Igor' V. Izmest'ev and Viktor I. Ukhobotov},
title = {Control problem for a parabolic system with uncertainties and a non-convex goal},
journal = {Ural mathematical journal},
pages = {121--131},
year = {2023},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a9/}
}
TY - JOUR AU - Igor' V. Izmest'ev AU - Viktor I. Ukhobotov TI - Control problem for a parabolic system with uncertainties and a non-convex goal JO - Ural mathematical journal PY - 2023 SP - 121 EP - 131 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a9/ LA - en ID - UMJ_2023_9_2_a9 ER -
Igor' V. Izmest'ev; Viktor I. Ukhobotov. Control problem for a parabolic system with uncertainties and a non-convex goal. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 121-131. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a9/
[1] Barseghyan V., Solodusha S., “The problem of boundary control of the thermal process in a rod”, Mathematics, 11:13 (2023), 2881 | DOI
[2] Casas E., Yong J., “Optimal control of a parabolic equation with memory”, ESAIM Control Optim. Calc. Var., 29 (2023), 23 | DOI | Zbl
[3] Dai J., Ren B., “UDE-based robust boundary control of heat equation with unknown input disturbance”, IFAC-PapersOnLine, 50:1 (2017), 11403–11408 | DOI
[4] Egorov A. I., Optimal'noe upravlenie teplovymi i diffuzionnymi protsessami [Optimal Control of Thermal and Diffusion Processes], Nauka, Moscow, 1978, 464 pp. (in Russian)
[5] Feng H., Xu Ch.-Z., Yao P.-F., “Observers and disturbance rejection control for a heat equation”, IEEE Trans. Automat. Control, 65:11 (2020), 4957–4964 | DOI | MR
[6] Izmest'ev I. V., Ukhobotov V. I., “On one problem of controlling the heating of a rod system under uncertainty”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022), 546–556 (in Russian) | DOI | Zbl
[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Nauka, Moscow, 1972, 496 pp. (in Russian)
[8] Korotkii A. I., Osipov Iu. S., “Approximation in problems of position control of parabolic systems”, J. Appl. Math. Mech., 42:4 (1978), 631–637 | DOI | MR
[9] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi [Control of a Dynamical System], Nauka, Moscow, 1985, 520 pp. (in Russian)
[10] Lohéac J., “Nonnegative boundary control of 1D linear heat equations”, Vietnam J. Math., 49:3 (2021), 845–870 | DOI | MR | Zbl
[11] Maksimov V. I., “On the reconstruction of an input disturbance in a reaction-diffusion system”, Comput. Math. Math. Phys., 63:6 (2023), 990–1000 | DOI | MR | Zbl
[12] Okhezin S. P., “Differential encounter-evasion game for a parabolic system under integral constraints on the player's controls”, J. Appl. Math. Mech., 41:2 (1977), 194–201 | DOI | MR
[13] Osipov Iu. S., “Position control in parabolic systems”, J. Appl. Math. Mech., 41:2 (1977), 187–193 | DOI | MR
[14] Osipov Yu. S., Okhezin S. P., “On the theory of differential games in parabolic systems”, Dokl. Akad. Nauk SSSR, 226:6 (1976), 1267–1270 | MR | Zbl
[15] Ukhobotov V. I., Izmest'ev I. V., “A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 297–305 (in Russian) | DOI
[16] Ukhobotov V. I., Metod odnomernogo proektirovaniya v lineinykh differentsial'nykh igrakh s integral'nymi ogranicheniyami [Method of One-Dimensional Projecting in Linear Differential Games with Integral Constraints], Chelyabinsk State University, Chelyabinsk, 2005, 124 pp. (in Russian)
[17] Ukhobotov V. I., “One type differential games with convex goal”, Trudy Inst. Mat. Mekh. UrO RAN, 16:5 (2010), 196–204 (in Russian)
[18] Wang S., Qi J., Diagne M., “Adaptive boundary control of reaction-diffusion PDEs with unknown input delay”, Automatica, 134 (2021), 109909 | DOI | Zbl
[19] Zheng G., Li J., “Stabilization for the multi-dimensional heat equation with disturbance on the controller”, Automatica, 82 (2017), 319–323 | DOI | Zbl