A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 109-120

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the following $\mathcal{L}$-difference equation $$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$ where $\Phi$ is a monic polynomial (even), $\deg\Phi\leq2$, $\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0$, are complex numbers and $\mathcal{L}$ is either the Dunkl operator $T_\mu$ or the the $q$-Dunkl operator $T_{(\theta,q)}$. We show that if $\mathcal{L}=T_\mu$, then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if $\mathcal{L}=T_{(\theta,q)}$, then the $q^2$-analogue of generalized Hermite and the $q^2$-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences satisfying the $\mathcal{L}$-difference equation.
Keywords: Dunkl operator, $q$-Dunkl operator.
Mots-clés : Orthogonal polynomials
@article{UMJ_2023_9_2_a8,
     author = {Yahia Habbachi},
     title = {A new characterization of  symmetric dunkl and $q$-dunkl-classical orthogonal polynomials},
     journal = {Ural mathematical journal},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/}
}
TY  - JOUR
AU  - Yahia Habbachi
TI  - A new characterization of  symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
JO  - Ural mathematical journal
PY  - 2023
SP  - 109
EP  - 120
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/
LA  - en
ID  - UMJ_2023_9_2_a8
ER  - 
%0 Journal Article
%A Yahia Habbachi
%T A new characterization of  symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
%J Ural mathematical journal
%D 2023
%P 109-120
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/
%G en
%F UMJ_2023_9_2_a8
Yahia Habbachi. A new characterization of  symmetric dunkl and $q$-dunkl-classical orthogonal polynomials. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 109-120. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/