A new characterization of  symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
    
    
  
  
  
      
      
      
        
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 109-120
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper,  we consider the following $\mathcal{L}$-difference equation $$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$ where $\Phi$ is a monic polynomial (even), $\deg\Phi\leq2$, $\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0$, are complex numbers and  $\mathcal{L}$ is either the Dunkl operator $T_\mu$ or the  the $q$-Dunkl operator $T_{(\theta,q)}$. We show that if $\mathcal{L}=T_\mu$, then  the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials  and if $\mathcal{L}=T_{(\theta,q)}$, then the $q^2$-analogue of generalized
Hermite and the $q^2$-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences
satisfying the $\mathcal{L}$-difference equation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Dunkl operator, $q$-Dunkl operator.
Mots-clés : Orthogonal polynomials
                    
                  
                
                
                Mots-clés : Orthogonal polynomials
@article{UMJ_2023_9_2_a8,
     author = {Yahia Habbachi},
     title = {A new characterization of  symmetric dunkl and $q$-dunkl-classical orthogonal polynomials},
     journal = {Ural mathematical journal},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/}
}
                      
                      
                    Yahia Habbachi. A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 109-120. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/