A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 109-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the following $\mathcal{L}$-difference equation $$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$ where $\Phi$ is a monic polynomial (even), $\deg\Phi\leq2$, $\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0$, are complex numbers and $\mathcal{L}$ is either the Dunkl operator $T_\mu$ or the the $q$-Dunkl operator $T_{(\theta,q)}$. We show that if $\mathcal{L}=T_\mu$, then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if $\mathcal{L}=T_{(\theta,q)}$, then the $q^2$-analogue of generalized Hermite and the $q^2$-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences satisfying the $\mathcal{L}$-difference equation.
Keywords: Dunkl operator, $q$-Dunkl operator.
Mots-clés : Orthogonal polynomials
@article{UMJ_2023_9_2_a8,
     author = {Yahia Habbachi},
     title = {A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials},
     journal = {Ural mathematical journal},
     pages = {109--120},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/}
}
TY  - JOUR
AU  - Yahia Habbachi
TI  - A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
JO  - Ural mathematical journal
PY  - 2023
SP  - 109
EP  - 120
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/
LA  - en
ID  - UMJ_2023_9_2_a8
ER  - 
%0 Journal Article
%A Yahia Habbachi
%T A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
%J Ural mathematical journal
%D 2023
%P 109-120
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/
%G en
%F UMJ_2023_9_2_a8
Yahia Habbachi. A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 109-120. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/

[1] Al-Salam W. A., Chihara T. S., “Another characterization of the classical orthogonal polynomials”, SIAM J. Math. Anal., 3:1 (1972), 65–70 | DOI | MR | Zbl

[2] Aloui B., Souissi J., “Characterization of $q$-Dunkl-classical symmetric orthogonal $q$-polynomials”, Ramanujan J., 57:2 (2022), 1355–1365 | DOI | MR | Zbl

[3] Belmehdi S., “Generalized Gegenbauer orthogonal polynomials”, J. Comput. Appl. Math., 133:1–2 (2001), 195–205 | DOI | MR | Zbl

[4] Bochner S., “Über Sturm–Liouvillesche polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI | MR

[5] Bouanani A., Khériji L., Ihsen Tounsi M., “Characterization of $q$-Dunkl Appell symmetric orthogonal $q$-polynomials”, Expo. Math., 28:4 (2010), 325–336 | DOI | MR | Zbl

[6] Bouras B., “Some characterizations of Dunkl-classical orthogonal polynomials”, J. Difference Equ. Appl., 20:8 (2014), 1240—1257 | DOI | MR | Zbl

[7] Bouras B., Habbachi Y., Marcellán F., “Characterizations of the symmetric $T_{(\theta,q)}$-classical orthogonal $q$-polynomials”, Mediterr. J. Math., 19:2 (2022), 66, 1–18 | DOI | MR

[8] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, Sci. Publ., Inc., New York, 1978, 249 pp. | Zbl

[9] Datta S., Griffin J., “A characterization of some $q$-orthogonal polynomials”, Ramanujan J., 12 (2006), 425–437 | DOI | MR | Zbl

[10] Dunkl C. F., “Integral kernels reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR | Zbl

[11] Geronimus J. L., “On polynomials orthogonal with respect to numerical sequences and on Hahn's theorem”, Izv. Akad. Nauk., 250 (1940), 215–228 (in Russian) | MR

[12] Ghressi A., Khériji L., “The symmetrical $H_q$-semiclassical orthogonal polynomials of class one”, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), 076, 1–22 | DOI | MR

[13] Hildebrandt E. H., “Systems of polynomials connected with the Charlier expansions and the Pearson differential and difference equation”, Ann. Math. Statist., 2:4 (1931), 379–439 | DOI | Zbl

[14] Marcellán F., Branquinho A., Petronilho J., “Classical orthogonal polynomials: a functional Approach”, Acta. Appl. Math., 34 (1994), 283–303 | DOI | MR | Zbl

[15] Maroni P. Fonctions eulériennes., “Polynômes orthogonaux classiques”, Techniques de L'ingénieur, 154 (1994), 1–30 (in French) | DOI

[16] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, IMACS Ann. Comput. Appl. Math., 9 (1991), 95–130 (in French) | Zbl

[17] Maroni P., “Variations around classical orthogonal polynomials. Connected problems”, J. Comput. Appl. Math., 48:1–2 (1993), 133–155 | DOI | MR | Zbl

[18] Sghaier M., “A note on Dunkl-classical orthogonal polynomials”, Integral Transforms Spec. Funct., 23:10 (2012), 753–760 | DOI | MR | Zbl