Mots-clés : Orthogonal polynomials
@article{UMJ_2023_9_2_a8,
author = {Yahia Habbachi},
title = {A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials},
journal = {Ural mathematical journal},
pages = {109--120},
year = {2023},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/}
}
Yahia Habbachi. A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 109-120. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a8/
[1] Al-Salam W. A., Chihara T. S., “Another characterization of the classical orthogonal polynomials”, SIAM J. Math. Anal., 3:1 (1972), 65–70 | DOI | MR | Zbl
[2] Aloui B., Souissi J., “Characterization of $q$-Dunkl-classical symmetric orthogonal $q$-polynomials”, Ramanujan J., 57:2 (2022), 1355–1365 | DOI | MR | Zbl
[3] Belmehdi S., “Generalized Gegenbauer orthogonal polynomials”, J. Comput. Appl. Math., 133:1–2 (2001), 195–205 | DOI | MR | Zbl
[4] Bochner S., “Über Sturm–Liouvillesche polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI | MR
[5] Bouanani A., Khériji L., Ihsen Tounsi M., “Characterization of $q$-Dunkl Appell symmetric orthogonal $q$-polynomials”, Expo. Math., 28:4 (2010), 325–336 | DOI | MR | Zbl
[6] Bouras B., “Some characterizations of Dunkl-classical orthogonal polynomials”, J. Difference Equ. Appl., 20:8 (2014), 1240—1257 | DOI | MR | Zbl
[7] Bouras B., Habbachi Y., Marcellán F., “Characterizations of the symmetric $T_{(\theta,q)}$-classical orthogonal $q$-polynomials”, Mediterr. J. Math., 19:2 (2022), 66, 1–18 | DOI | MR
[8] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, Sci. Publ., Inc., New York, 1978, 249 pp. | Zbl
[9] Datta S., Griffin J., “A characterization of some $q$-orthogonal polynomials”, Ramanujan J., 12 (2006), 425–437 | DOI | MR | Zbl
[10] Dunkl C. F., “Integral kernels reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR | Zbl
[11] Geronimus J. L., “On polynomials orthogonal with respect to numerical sequences and on Hahn's theorem”, Izv. Akad. Nauk., 250 (1940), 215–228 (in Russian) | MR
[12] Ghressi A., Khériji L., “The symmetrical $H_q$-semiclassical orthogonal polynomials of class one”, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), 076, 1–22 | DOI | MR
[13] Hildebrandt E. H., “Systems of polynomials connected with the Charlier expansions and the Pearson differential and difference equation”, Ann. Math. Statist., 2:4 (1931), 379–439 | DOI | Zbl
[14] Marcellán F., Branquinho A., Petronilho J., “Classical orthogonal polynomials: a functional Approach”, Acta. Appl. Math., 34 (1994), 283–303 | DOI | MR | Zbl
[15] Maroni P. Fonctions eulériennes., “Polynômes orthogonaux classiques”, Techniques de L'ingénieur, 154 (1994), 1–30 (in French) | DOI
[16] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, IMACS Ann. Comput. Appl. Math., 9 (1991), 95–130 (in French) | Zbl
[17] Maroni P., “Variations around classical orthogonal polynomials. Connected problems”, J. Comput. Appl. Math., 48:1–2 (1993), 133–155 | DOI | MR | Zbl
[18] Sghaier M., “A note on Dunkl-classical orthogonal polynomials”, Integral Transforms Spec. Funct., 23:10 (2012), 753–760 | DOI | MR | Zbl