Computing the reachable set bounda for an abstract control system: revisited
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 99-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A control system can be treated as a mapping that maps a control to a trajectory (output) of the system. From this point of view, the reachable set, which consists of the ends of all trajectories at a given time, can be considered an image of the set of admissible controls into the state space under a nonlinear mapping. The paper discusses some properties of such abstract reachable sets. The principal attention is paid to the description of the set boundary.
Keywords: Reachable set, nonlinear mapping, control system, extremal problem, maximum principle.
@article{UMJ_2023_9_2_a7,
     author = {Mikhail I. Gusev},
     title = {Computing the reachable set bounda for an abstract control system: revisited},
     journal = {Ural mathematical journal},
     pages = {99--108},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a7/}
}
TY  - JOUR
AU  - Mikhail I. Gusev
TI  - Computing the reachable set bounda for an abstract control system: revisited
JO  - Ural mathematical journal
PY  - 2023
SP  - 99
EP  - 108
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a7/
LA  - en
ID  - UMJ_2023_9_2_a7
ER  - 
%0 Journal Article
%A Mikhail I. Gusev
%T Computing the reachable set bounda for an abstract control system: revisited
%J Ural mathematical journal
%D 2023
%P 99-108
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a7/
%G en
%F UMJ_2023_9_2_a7
Mikhail I. Gusev. Computing the reachable set bounda for an abstract control system: revisited. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 99-108. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a7/

[1] Ananyev B. I., Gusev M. I., Filippova T. F., Upravlenie i ocenivanie sostoyanij dinamicheskikh sistem s neopredelennost'yu [Control and Estimation of Dynamical Systems States with Uncertainty], Izdatel'stvo SO RAN, Novosibirsk, 2018, 193 pp. (in Russian)

[2] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numer. Algebra Control Optim., 3:3 (2013), 519–548 | DOI | MR | Zbl

[3] Clarke F. H., Optimization and Nonsmooth Analysis, J. Willey and Sons Inc., New York, 1983, 308 pp. | Zbl

[4] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Lyusternik's theorem and the theory of extrema”, Russian Math. Surveys, 35:6 (1980), 11–51 | DOI | Zbl

[5] Gornov A. Yu., Finkel'shtein E. A., “Algorithm for piecewise-linear approximation of the reachable set boundary”, Autom. Remote Control, 76:3 (2015), 385–393 | DOI | MR | Zbl

[6] Guseinov Kh. G., “Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls”, Nonlinear Anal. Theory, Methods Appl., 71:1–2 (2009), 622–645 | DOI | Zbl

[7] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differ. Equ. Appl., 14:1–2 (2007), 57–73 | DOI | Zbl

[8] Gusev M. I., “On reachability analysis of nonlinear systems with joint integral constraints”, Lecture Notes in Comput. Sci., Large-Scale Scientific Computing (LSSC 2017), v. 10665, eds. Lirkov I., Margenov S., Springer, Cham, 2018, 219–227 | DOI | Zbl

[9] Gusev M. I., “Computing the reachable set boundary for an abstract control problem”, AIP Conf. Proc., 2025:1 (2018), 040009 | DOI

[10] Gusev M. I., Zykov I. V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proc. Steklov Inst. Math., 300:Suppl. 1 (2018), 114–125 | DOI | MR

[11] Gusev M. I., Zykov I. V., “On the geometry of reachable sets for control systems with isoperimetric constraints”, Proc. Steklov Inst. Math., 304:Suppl. 1 (2019), S76–S87 | DOI | Zbl

[12] Kurzhanski A. B., Varaiya P., Dynamics and Control of Trajectory Tubes. Theory and Computation, Systems Control Found. Appl., no. 85, Birkhäuser, Basel, 2014, 445 pp. | DOI | Zbl

[13] Lee E. B., Marcus L., Foundations of Optimal Control Theory, J. Willey and Sons Inc., New York, 1967, 576 pp. | Zbl

[14] Patsko V. S., Pyatko S. G., Fedotov A. A., “Three-dimensional reachability set for a nonlinear control system”, J. Comput. Syst. Sci. Int., 42:3 (2003), 320–328 | Zbl

[15] Polyak B. T., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 255–267 | MR | Zbl

[16] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishechenko E. F., The Mathematical Theory of Optimal Processes, New York/London, 1962, 360 pp. | Zbl

[17] Vdovin S. A., Taras'ev A. M., Ushakov V. N., “Construction of an attainability set for the Brockett integrator”, J. Appl. Math. Mech., 68:5 (2004), 631–646 | DOI | MR | Zbl