@article{UMJ_2023_9_2_a7,
author = {Mikhail I. Gusev},
title = {Computing the reachable set bounda for an abstract control system: revisited},
journal = {Ural mathematical journal},
pages = {99--108},
year = {2023},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a7/}
}
Mikhail I. Gusev. Computing the reachable set bounda for an abstract control system: revisited. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 99-108. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a7/
[1] Ananyev B. I., Gusev M. I., Filippova T. F., Upravlenie i ocenivanie sostoyanij dinamicheskikh sistem s neopredelennost'yu [Control and Estimation of Dynamical Systems States with Uncertainty], Izdatel'stvo SO RAN, Novosibirsk, 2018, 193 pp. (in Russian)
[2] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numer. Algebra Control Optim., 3:3 (2013), 519–548 | DOI | MR | Zbl
[3] Clarke F. H., Optimization and Nonsmooth Analysis, J. Willey and Sons Inc., New York, 1983, 308 pp. | Zbl
[4] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Lyusternik's theorem and the theory of extrema”, Russian Math. Surveys, 35:6 (1980), 11–51 | DOI | Zbl
[5] Gornov A. Yu., Finkel'shtein E. A., “Algorithm for piecewise-linear approximation of the reachable set boundary”, Autom. Remote Control, 76:3 (2015), 385–393 | DOI | MR | Zbl
[6] Guseinov Kh. G., “Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls”, Nonlinear Anal. Theory, Methods Appl., 71:1–2 (2009), 622–645 | DOI | Zbl
[7] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differ. Equ. Appl., 14:1–2 (2007), 57–73 | DOI | Zbl
[8] Gusev M. I., “On reachability analysis of nonlinear systems with joint integral constraints”, Lecture Notes in Comput. Sci., Large-Scale Scientific Computing (LSSC 2017), v. 10665, eds. Lirkov I., Margenov S., Springer, Cham, 2018, 219–227 | DOI | Zbl
[9] Gusev M. I., “Computing the reachable set boundary for an abstract control problem”, AIP Conf. Proc., 2025:1 (2018), 040009 | DOI
[10] Gusev M. I., Zykov I. V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proc. Steklov Inst. Math., 300:Suppl. 1 (2018), 114–125 | DOI | MR
[11] Gusev M. I., Zykov I. V., “On the geometry of reachable sets for control systems with isoperimetric constraints”, Proc. Steklov Inst. Math., 304:Suppl. 1 (2019), S76–S87 | DOI | Zbl
[12] Kurzhanski A. B., Varaiya P., Dynamics and Control of Trajectory Tubes. Theory and Computation, Systems Control Found. Appl., no. 85, Birkhäuser, Basel, 2014, 445 pp. | DOI | Zbl
[13] Lee E. B., Marcus L., Foundations of Optimal Control Theory, J. Willey and Sons Inc., New York, 1967, 576 pp. | Zbl
[14] Patsko V. S., Pyatko S. G., Fedotov A. A., “Three-dimensional reachability set for a nonlinear control system”, J. Comput. Syst. Sci. Int., 42:3 (2003), 320–328 | Zbl
[15] Polyak B. T., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 255–267 | MR | Zbl
[16] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishechenko E. F., The Mathematical Theory of Optimal Processes, New York/London, 1962, 360 pp. | Zbl
[17] Vdovin S. A., Taras'ev A. M., Ushakov V. N., “Construction of an attainability set for the Brockett integrator”, J. Appl. Math. Mech., 68:5 (2004), 631–646 | DOI | MR | Zbl