Canonical approximations in impulse stabilization for a system with aftereffect
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 77-85

Voir la notice de l'article provenant de la source Math-Net.Ru

For optimal stabilization of an autonomous linear system of differential equations with aftereffect and impulse controls, the formulation of the problem in the functional state space is used. For a system with aftereffect, approximating systems of ordinary differential equations proposed by S.N. Shimanov and J. Hale are used. A method for constructing approximations for optimal stabilizing control of an autonomous linear system with aftereffect and impulse controls is proposed. Matrix Riccati equations are used to find approximating controls.
Keywords: Differential equation with aftereffect, canonical approximation, optimal stabilization, impulse control.
@article{UMJ_2023_9_2_a5,
     author = {Yurii. F. Dolgii},
     title = {Canonical approximations in impulse stabilization for a system with aftereffect},
     journal = {Ural mathematical journal},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a5/}
}
TY  - JOUR
AU  - Yurii. F. Dolgii
TI  - Canonical approximations in impulse stabilization for a system with aftereffect
JO  - Ural mathematical journal
PY  - 2023
SP  - 77
EP  - 85
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a5/
LA  - en
ID  - UMJ_2023_9_2_a5
ER  - 
%0 Journal Article
%A Yurii. F. Dolgii
%T Canonical approximations in impulse stabilization for a system with aftereffect
%J Ural mathematical journal
%D 2023
%P 77-85
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a5/
%G en
%F UMJ_2023_9_2_a5
Yurii. F. Dolgii. Canonical approximations in impulse stabilization for a system with aftereffect. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 77-85. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a5/