$\mathcal{I}^{\mathcal{K}}$-sequential topology
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 46-59

Voir la notice de l'article provenant de la source Math-Net.Ru

In the literature, $\mathcal{I}$-convergence (or convergence in $\mathcal{I}$) was first introduced in [11]. Later related notions of $\mathcal{I}$-sequential topological space and $\mathcal{I}^*$-sequential topological space were introduced and studied. From the definitions it is clear that $\mathcal{I}^*$-sequential topological space is larger(finer) than $\mathcal{I}$-sequential topological space. This rises a question: is there any topology (different from discrete topology) on the topological space $\mathcal{X}$ which is finer than $\mathcal{I}^*$-topological space? In this paper, we tried to find the answer to the question. We define $\mathcal{I}^{\mathcal{K}}$-sequential topology for any ideals $\mathcal{I}$, $\mathcal{K}$ and study main properties of it. First of all, some fundamental results about $\mathcal{I}^{\mathcal{K}}$-convergence of a sequence in a topological space $(\mathcal{X} ,\mathcal{T})$ are derived. After that, $\mathcal{I}^{\mathcal{K}}$-continuity and the subspace of the $\mathcal{I}^{\mathcal{K}}$-sequential topological space are investigated.
Keywords: ideal convergence, $\mathcal{I}^{\mathcal{K}}$-convergence, sequential topology, $\mathcal{I}^{\mathcal{K}}$-sequential topology.
@article{UMJ_2023_9_2_a3,
     author = {H. S. Behmanush and M. K\"u\c{c}\"ukaslan},
     title = {$\mathcal{I}^{\mathcal{K}}$-sequential topology},
     journal = {Ural mathematical journal},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/}
}
TY  - JOUR
AU  - H. S. Behmanush
AU  - M. Küçükaslan
TI  - $\mathcal{I}^{\mathcal{K}}$-sequential topology
JO  - Ural mathematical journal
PY  - 2023
SP  - 46
EP  - 59
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/
LA  - en
ID  - UMJ_2023_9_2_a3
ER  - 
%0 Journal Article
%A H. S. Behmanush
%A M. Küçükaslan
%T $\mathcal{I}^{\mathcal{K}}$-sequential topology
%J Ural mathematical journal
%D 2023
%P 46-59
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/
%G en
%F UMJ_2023_9_2_a3
H. S. Behmanush; M. Küçükaslan. $\mathcal{I}^{\mathcal{K}}$-sequential topology. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 46-59. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/