$\mathcal{I}^{\mathcal{K}}$-sequential topology
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 46-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the literature, $\mathcal{I}$-convergence (or convergence in $\mathcal{I}$) was first introduced in [11]. Later related notions of $\mathcal{I}$-sequential topological space and $\mathcal{I}^*$-sequential topological space were introduced and studied. From the definitions it is clear that $\mathcal{I}^*$-sequential topological space is larger(finer) than $\mathcal{I}$-sequential topological space. This rises a question: is there any topology (different from discrete topology) on the topological space $\mathcal{X}$ which is finer than $\mathcal{I}^*$-topological space? In this paper, we tried to find the answer to the question. We define $\mathcal{I}^{\mathcal{K}}$-sequential topology for any ideals $\mathcal{I}$, $\mathcal{K}$ and study main properties of it. First of all, some fundamental results about $\mathcal{I}^{\mathcal{K}}$-convergence of a sequence in a topological space $(\mathcal{X} ,\mathcal{T})$ are derived. After that, $\mathcal{I}^{\mathcal{K}}$-continuity and the subspace of the $\mathcal{I}^{\mathcal{K}}$-sequential topological space are investigated.
Keywords: ideal convergence, $\mathcal{I}^{\mathcal{K}}$-convergence, sequential topology, $\mathcal{I}^{\mathcal{K}}$-sequential topology.
@article{UMJ_2023_9_2_a3,
     author = {H. S. Behmanush and M. K\"u\c{c}\"ukaslan},
     title = {$\mathcal{I}^{\mathcal{K}}$-sequential topology},
     journal = {Ural mathematical journal},
     pages = {46--59},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/}
}
TY  - JOUR
AU  - H. S. Behmanush
AU  - M. Küçükaslan
TI  - $\mathcal{I}^{\mathcal{K}}$-sequential topology
JO  - Ural mathematical journal
PY  - 2023
SP  - 46
EP  - 59
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/
LA  - en
ID  - UMJ_2023_9_2_a3
ER  - 
%0 Journal Article
%A H. S. Behmanush
%A M. Küçükaslan
%T $\mathcal{I}^{\mathcal{K}}$-sequential topology
%J Ural mathematical journal
%D 2023
%P 46-59
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/
%G en
%F UMJ_2023_9_2_a3
H. S. Behmanush; M. Küçükaslan. $\mathcal{I}^{\mathcal{K}}$-sequential topology. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 46-59. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a3/

[1] Blali A., El Amrani A., Hasani R. A., Razouki A., “On the uniqueness of $\mathcal{I}$-limits of sequences”, Siberian Electron. Math. Rep., 8:2 (2021), 744–757 | DOI | MR

[2] Banerjee A. K., Paul M., “Strong $\mathcal{I}^{\mathcal{K}}$-convergence in probabilistic metric spaces”, Iranian J. Math. Sci. Inform., 17:2 (2022), 273–288 | DOI | MR | Zbl

[3] Banerjee A. K., Paul M., A note on ${I}^{K}$ and $I^{K^{*}}$-Convergence in Topological Spaces, 2018, 10 pp., arXiv: [math.GN] 1807.11772v1

[4] Das P., “Some further results on ideal convergence in topological spaces”, Topology Appl., 159:10–11 (2012), 2621–2626 | DOI | MR | Zbl

[5] Das P., Sleziak M., Toma V., “$\mathcal{I}^{\mathcal{K}}$-Cauchy functions”, Topology Appl., 173 (2014), 9–27 | DOI | MR | Zbl

[6] Das P., Sengupta S., Šupina J., “$\mathcal{I}^{\mathcal{K}}$-convergence of sequence of functions”, Math. Slovaca, 69:5 (2019), 1137–1148 | DOI | MR | Zbl

[7] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241–244 (in French) https://eudml.org/doc/209960 | DOI | MR | Zbl

[8] Georgiou D., Iliadis S., Megaritis A., Prinos G., “Ideal-convergence classes”, Topology Appl., 222 (2017), 217–226 | DOI | MR | Zbl

[9] Jasinski J., Recław I., “Ideal convergence of continuous functions”, Topology Appl., 153:18 (2006), 3511–3518 | DOI | MR | Zbl

[10] Kostyrko P., Mačaj M., Šalát T., Sleziak M., “$\mathcal{I}$-convergence and extremal $\mathcal{I}$-limit points”, Math. Slovaca, 55:4 (2005), 443–464 | MR | Zbl

[11] Kostyrko P., Šalát T., Wilczyńki W., “$\mathcal{I}$-convergence”, Real Anal. Exchange, 26:2 (2000/2001), 669–685 | DOI | MR

[12] Lahiri B. K., Das P., “$I$ and $I^{*}$-convergence in topological space”, Math. Bohem., 130:2 (2005), 153—160 | DOI | MR | Zbl

[13] Mačaj M., Sleziak M., “$\mathcal{I}^{\mathcal{K}}$-convergence”, Real Anal. Exchange, 36:1 (2010–2011), 177–194 | MR

[14] Mursaleen M., Debnath S., Rakshit D., “$I$-statistical limit superior and $I$-statistical limit inferior”, Filomat, 31:7 (2017), 2103–2108 | DOI | MR | Zbl

[15] Öztürk F., Şençimen C., Pehlivan S., “Strong $\Gamma$-ideal convergence in a probabilistic normed space”, Topology Appl., 201 (2016), 171–180 | DOI | MR | Zbl

[16] Pal S. K., “$\mathcal{I}$-sequential topological space”, Appl. Math. E-Notes, 14 (2014), 236–241 | MR | Zbl

[17] Renukadevi V., Prakash B., “$\mathcal{I}$: Fréchet-Urysohn spaces”, Math. Morav., 20:2 (2016), 87–97 | DOI | MR | Zbl

[18] Sabor Behmanush H., Küçükaslan M., Some Properties of $\mathcal{I}^*$-Sequential Topological Space, 2023, 13 pp., arXiv: [math.GN] 2305.19647

[19] Šalát T., Tripathy B. C., Ziman M., “On some properties of $\mathcal{I}$-convergence”, Tatra Mt. Math. Publ., 28:2 (2004), 279–286 | MR | Zbl

[20] Steinhaus H., “Sur la convergence ordinaire et la convergence asymptotique”, Colloq. Math., 2 (1951), 73–74 (in French) | DOI

[21] Zhou X., Liu L., Lin S., “On topological space defined by $\mathcal{I}$-convergence”, Bull. Iran. Math. Soc., 46:3 (2020), 675–692 | DOI | MR | Zbl