Graceful chromatic number of some cartesian product graphs
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 193-208

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G(V,E)$ is a system consisting of a finite non empty set of vertices $V(G)$ and a set of edges $E(G)$. A (proper) vertex colouring of $G$ is a function $f:V(G)\rightarrow \{1,2,\ldots,k\},$ for some positive integer $k$ such that $f(u)\neq f(v)$ for every edge $uv\in E(G)$. Moreover, if $|f(u)-f(v)|\neq |f(v)-f(w)|$ for every adjacent edges $uv,vw\in E(G)$, then the function $f$ is called graceful colouring for $G$. The minimum number $k$ such that $f$ is a graceful colouring for $G$ is called the graceful chromatic number of $G$. The purpose of this research is to determine graceful chromatic number of Cartesian product graphs $C_m \times P_n$ for integers $m\geq 3$ and $n\geq 2$, and $C_m \times C_n$ for integers $m,n\geq 3$. Here, $C_m$ and $P_m$ are cycle and path with $m$ vertices, respectively. We found some exact values and bounds for graceful chromatic number of these mentioned Cartesian product graphs.
Keywords: Graceful colouring, graceful chromatic number, cartesian product.
@article{UMJ_2023_9_2_a15,
     author = {I. Nengah Suparta and Mathiyazhagan Venkathacalam and I Gede Aris Gunadi and Putu Andi Cipta Pratama},
     title = {Graceful chromatic number of some cartesian product graphs},
     journal = {Ural mathematical journal},
     pages = {193--208},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/}
}
TY  - JOUR
AU  - I. Nengah Suparta
AU  - Mathiyazhagan Venkathacalam
AU  - I Gede Aris Gunadi
AU  - Putu Andi Cipta Pratama
TI  - Graceful chromatic number of some cartesian product graphs
JO  - Ural mathematical journal
PY  - 2023
SP  - 193
EP  - 208
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/
LA  - en
ID  - UMJ_2023_9_2_a15
ER  - 
%0 Journal Article
%A I. Nengah Suparta
%A Mathiyazhagan Venkathacalam
%A I Gede Aris Gunadi
%A Putu Andi Cipta Pratama
%T Graceful chromatic number of some cartesian product graphs
%J Ural mathematical journal
%D 2023
%P 193-208
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/
%G en
%F UMJ_2023_9_2_a15
I. Nengah Suparta; Mathiyazhagan Venkathacalam; I Gede Aris Gunadi; Putu Andi Cipta Pratama. Graceful chromatic number of some cartesian product graphs. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 193-208. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/