Graceful chromatic number of some cartesian product graphs
    
    
  
  
  
      
      
      
        
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 193-208
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A graph $G(V,E)$ is a system consisting of a finite non empty set of vertices $V(G)$ and a set of edges $E(G)$. A (proper) vertex colouring of $G$ is a function $f:V(G)\rightarrow \{1,2,\ldots,k\},$ for some positive integer $k$ such that $f(u)\neq f(v)$ for every edge $uv\in E(G)$. Moreover, if $|f(u)-f(v)|\neq |f(v)-f(w)|$ for every adjacent edges $uv,vw\in E(G)$, then the function $f$ is called graceful colouring for $G$. The minimum number $k$ such that $f$ is a graceful colouring for $G$ is called the graceful chromatic number of $G$. The purpose of this research is to determine graceful chromatic number of Cartesian product graphs $C_m \times P_n$ for integers $m\geq 3$ and $n\geq 2$, and $C_m \times C_n$ for integers $m,n\geq 3$. Here, $C_m$ and $P_m$ are cycle and path with $m$ vertices, respectively.  We found some exact values and bounds for graceful chromatic number of these mentioned Cartesian product graphs.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Graceful colouring, graceful chromatic number, cartesian product.
                    
                    
                    
                  
                
                
                @article{UMJ_2023_9_2_a15,
     author = {I. Nengah Suparta and Mathiyazhagan Venkathacalam and I Gede Aris Gunadi and Putu Andi Cipta Pratama},
     title = {Graceful chromatic number of some cartesian product graphs},
     journal = {Ural mathematical journal},
     pages = {193--208},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/}
}
                      
                      
                    TY - JOUR AU - I. Nengah Suparta AU - Mathiyazhagan Venkathacalam AU - I Gede Aris Gunadi AU - Putu Andi Cipta Pratama TI - Graceful chromatic number of some cartesian product graphs JO - Ural mathematical journal PY - 2023 SP - 193 EP - 208 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/ LA - en ID - UMJ_2023_9_2_a15 ER -
%0 Journal Article %A I. Nengah Suparta %A Mathiyazhagan Venkathacalam %A I Gede Aris Gunadi %A Putu Andi Cipta Pratama %T Graceful chromatic number of some cartesian product graphs %J Ural mathematical journal %D 2023 %P 193-208 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/ %G en %F UMJ_2023_9_2_a15
I. Nengah Suparta; Mathiyazhagan Venkathacalam; I Gede Aris Gunadi; Putu Andi Cipta Pratama. Graceful chromatic number of some cartesian product graphs. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 193-208. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/