Graceful chromatic number of some cartesian product graphs
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 193-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A graph $G(V,E)$ is a system consisting of a finite non empty set of vertices $V(G)$ and a set of edges $E(G)$. A (proper) vertex colouring of $G$ is a function $f:V(G)\rightarrow \{1,2,\ldots,k\},$ for some positive integer $k$ such that $f(u)\neq f(v)$ for every edge $uv\in E(G)$. Moreover, if $|f(u)-f(v)|\neq |f(v)-f(w)|$ for every adjacent edges $uv,vw\in E(G)$, then the function $f$ is called graceful colouring for $G$. The minimum number $k$ such that $f$ is a graceful colouring for $G$ is called the graceful chromatic number of $G$. The purpose of this research is to determine graceful chromatic number of Cartesian product graphs $C_m \times P_n$ for integers $m\geq 3$ and $n\geq 2$, and $C_m \times C_n$ for integers $m,n\geq 3$. Here, $C_m$ and $P_m$ are cycle and path with $m$ vertices, respectively. We found some exact values and bounds for graceful chromatic number of these mentioned Cartesian product graphs.
Keywords: Graceful colouring, graceful chromatic number, cartesian product.
@article{UMJ_2023_9_2_a15,
     author = {I. Nengah Suparta and Mathiyazhagan Venkathacalam and I Gede Aris Gunadi and Putu Andi Cipta Pratama},
     title = {Graceful chromatic number of some cartesian product graphs},
     journal = {Ural mathematical journal},
     pages = {193--208},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/}
}
TY  - JOUR
AU  - I. Nengah Suparta
AU  - Mathiyazhagan Venkathacalam
AU  - I Gede Aris Gunadi
AU  - Putu Andi Cipta Pratama
TI  - Graceful chromatic number of some cartesian product graphs
JO  - Ural mathematical journal
PY  - 2023
SP  - 193
EP  - 208
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/
LA  - en
ID  - UMJ_2023_9_2_a15
ER  - 
%0 Journal Article
%A I. Nengah Suparta
%A Mathiyazhagan Venkathacalam
%A I Gede Aris Gunadi
%A Putu Andi Cipta Pratama
%T Graceful chromatic number of some cartesian product graphs
%J Ural mathematical journal
%D 2023
%P 193-208
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/
%G en
%F UMJ_2023_9_2_a15
I. Nengah Suparta; Mathiyazhagan Venkathacalam; I Gede Aris Gunadi; Putu Andi Cipta Pratama. Graceful chromatic number of some cartesian product graphs. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 193-208. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a15/

[1] Alfarisi R., Dafik, Prihandini R. M., Adawiyah R., Albirri E. R., Agustin I. H., “Graceful Chromatic Number of Unicyclic Graphs”, J. Phys.: Conf. Ser., 1306, The 2nd Int. Conf. Math.: Education, Theory, and Application (30–31 October 2018, Sukoharjo, Indonesia). (2019), 012039 | DOI

[2] Asyari M. L., Agustin I. H., Nisviasari R., Adawiyah R., “On graceful chromatic number of some graphs.”, J. Phys.: Conf. Ser., 2157, The 5th Int. Conf. Combinatorics, Graph Theory, and Network Topology, ICCGANT 2021. (21–22 August 2021, Jember, Indonesia) (2022), 012013 | DOI

[3] Byers A. D., Graceful Colorings and Connection in Graphs, Diss. Doct. at Western Michigan University, Dissertations, no. 3308, 2018 URL: https://scholarworks.wmich.edu/dissertations/3308

[4] English E., Zhang P., Kalamazoo, “On graceful colourings of trees”, Math. Bohem., 142:1 (2016), 57–73 URL: http://dml.cz/dmlcz/146009 | DOI

[5] Gallian J. A., “A dynamic survey of graph labeling”, Electron. J. Combin., 24 (2021), 1–623 URL: https://www.combinatorics.org/files/Surveys/ds6/ds6v25-2022.pdf

[6] Mincu R., Obreja C., Popa A., “The graceful chromatic number for some particular classes of graphs”, Proc. 21st Int. Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), IEEE Xplore, 2019, 19492926 | DOI