@article{UMJ_2023_9_2_a14,
author = {Apatsara Sareeto and J\"org Koppitz},
title = {A presentation for a submonoid of the symmetric inverse monoid},
journal = {Ural mathematical journal},
pages = {175--192},
year = {2023},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a14/}
}
Apatsara Sareeto; Jörg Koppitz. A presentation for a submonoid of the symmetric inverse monoid. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a14/
[1] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, Math. Surveys Monogr., no. 7, part 1, Amer. Math. Soc. Surveys, Providence. R.I., 1961 ; no. 7, part 2, Amer. Math. Soc. Surveys, Providence. R.I., 1967 | DOI | Zbl | DOI
[2] Currie J. D., Visentin T. I., “The number of order-preserving maps of fences and crowns”, Order, 8 (1991), 133–142 | DOI | MR
[3] Dimitrova I., Koppitz J., Lohapan L., “Generating sets of semigroups of partial transformations preserving a zig-zag order on $\mathbb{N}$”, Int. J. Pure Appl. Math., 117:2 (2017), 279–289 | DOI
[4] East J., “A presentation of the singular part of the symmetric inverse monoid”, Comm. Algebra, 34:5 (2006), 1671–1689 | DOI | MR | Zbl
[5] East J., “A presentation for the singular part of the full transformation semigroup”, Semigroup Forum, 81 (2010), 357–379 | DOI | MR | Zbl
[6] Fernandes V. H., “The monoid of all injective order preserving partial transformations on a finite chain”, Semigroup Forum, 62 (2001), 178–204 | DOI | MR | Zbl
[7] Fernandes V. H., Koppitz J., Musunthia T., “The rank of the semigroup of all order-preserving transformations on a finite fence”, Bull. Malays. Math. Sci. Soc., 42 (2019), 2191–2211 | DOI | MR | Zbl
[8] Howie J. M., Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995, 351 pp. | Zbl
[9] Jendana K., Srithus R., “Coregularity of order-preserving self-mapping semigroups of fences”, Commun. Korean Math. Soc., 30:4 (2015), 349–361 | DOI | MR | Zbl
[10] Lallement G., Semigroups and Combinatorial Applications, Wiley, New York, 1979, 376 pp. | Zbl
[11] Lohapan L., Koppitz J., “Regular semigroups of partial transformations preserving a fence $\mathbb{N}$”, Novi Sad J. Math., 47:2 (2017), 77–91 | DOI | MR | Zbl
[12] Lohapan L., Koppitz J., Worawiset S., “Congruences on infinite semigroups of transformations preserving a zig-zag order”, J. Algebra Appl., 20:09 (2021), 2150167 | DOI | MR | Zbl
[13] Ruškuc N., Semigroup Presentations, Ph. D. Thesis., University of St Andrews, St Andrews, 1995
[14] Rutkowski A., “The formula for the number of order-preserving selfmappings of a fence”, Order, 9 (1992), 127–137 | DOI | MR | Zbl
[15] Sareeto A., Koppitz J., “The rank of the semigroup of order-, fence- and parity-preserving partial injections on a finite set”, Asian-Eur. J. Math., 2023 | DOI | MR
[16] Srithus R., Chinram R., Khongthat C., “Regularity in the semigroup of transformations preserving a zig-zag order”, Bull. Malays. Math. Sci. Soc., 43:2 (2020), 1761–1773 | DOI | MR | Zbl
[17] Wagner V. V., “Generalized groups”, Dokl. Akad. Nauk SSSR, 84:6 (1952), 1119–1122 (in Russian) | Zbl