A presentation for a submonoid of the symmetric inverse monoid
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 175-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we study a submonoid of the symmetric inverse semigroup $I_n$. Specifically, we consider the monoid of all order-, fence-, and parity-preserving transformations of $I_n$. While the rank and a set of generators of minimal size for this monoid are already known, we will provide a presentation for this monoid.
Keywords: Symmetric inverse monoid, order-preserving, fence-preserving, presentation.
@article{UMJ_2023_9_2_a14,
     author = {Apatsara Sareeto and J\"org Koppitz},
     title = {A presentation for a submonoid of the symmetric inverse monoid},
     journal = {Ural mathematical journal},
     pages = {175--192},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a14/}
}
TY  - JOUR
AU  - Apatsara Sareeto
AU  - Jörg Koppitz
TI  - A presentation for a submonoid of the symmetric inverse monoid
JO  - Ural mathematical journal
PY  - 2023
SP  - 175
EP  - 192
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a14/
LA  - en
ID  - UMJ_2023_9_2_a14
ER  - 
%0 Journal Article
%A Apatsara Sareeto
%A Jörg Koppitz
%T A presentation for a submonoid of the symmetric inverse monoid
%J Ural mathematical journal
%D 2023
%P 175-192
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a14/
%G en
%F UMJ_2023_9_2_a14
Apatsara Sareeto; Jörg Koppitz. A presentation for a submonoid of the symmetric inverse monoid. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a14/

[1] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, Math. Surveys Monogr., no. 7, part 1, Amer. Math. Soc. Surveys, Providence. R.I., 1961 ; no. 7, part 2, Amer. Math. Soc. Surveys, Providence. R.I., 1967 | DOI | Zbl | DOI

[2] Currie J. D., Visentin T. I., “The number of order-preserving maps of fences and crowns”, Order, 8 (1991), 133–142 | DOI | MR

[3] Dimitrova I., Koppitz J., Lohapan L., “Generating sets of semigroups of partial transformations preserving a zig-zag order on $\mathbb{N}$”, Int. J. Pure Appl. Math., 117:2 (2017), 279–289 | DOI

[4] East J., “A presentation of the singular part of the symmetric inverse monoid”, Comm. Algebra, 34:5 (2006), 1671–1689 | DOI | MR | Zbl

[5] East J., “A presentation for the singular part of the full transformation semigroup”, Semigroup Forum, 81 (2010), 357–379 | DOI | MR | Zbl

[6] Fernandes V. H., “The monoid of all injective order preserving partial transformations on a finite chain”, Semigroup Forum, 62 (2001), 178–204 | DOI | MR | Zbl

[7] Fernandes V. H., Koppitz J., Musunthia T., “The rank of the semigroup of all order-preserving transformations on a finite fence”, Bull. Malays. Math. Sci. Soc., 42 (2019), 2191–2211 | DOI | MR | Zbl

[8] Howie J. M., Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995, 351 pp. | Zbl

[9] Jendana K., Srithus R., “Coregularity of order-preserving self-mapping semigroups of fences”, Commun. Korean Math. Soc., 30:4 (2015), 349–361 | DOI | MR | Zbl

[10] Lallement G., Semigroups and Combinatorial Applications, Wiley, New York, 1979, 376 pp. | Zbl

[11] Lohapan L., Koppitz J., “Regular semigroups of partial transformations preserving a fence $\mathbb{N}$”, Novi Sad J. Math., 47:2 (2017), 77–91 | DOI | MR | Zbl

[12] Lohapan L., Koppitz J., Worawiset S., “Congruences on infinite semigroups of transformations preserving a zig-zag order”, J. Algebra Appl., 20:09 (2021), 2150167 | DOI | MR | Zbl

[13] Ruškuc N., Semigroup Presentations, Ph. D. Thesis., University of St Andrews, St Andrews, 1995

[14] Rutkowski A., “The formula for the number of order-preserving selfmappings of a fence”, Order, 9 (1992), 127–137 | DOI | MR | Zbl

[15] Sareeto A., Koppitz J., “The rank of the semigroup of order-, fence- and parity-preserving partial injections on a finite set”, Asian-Eur. J. Math., 2023 | DOI | MR

[16] Srithus R., Chinram R., Khongthat C., “Regularity in the semigroup of transformations preserving a zig-zag order”, Bull. Malays. Math. Sci. Soc., 43:2 (2020), 1761–1773 | DOI | MR | Zbl

[17] Wagner V. V., “Generalized groups”, Dokl. Akad. Nauk SSSR, 84:6 (1952), 1119–1122 (in Russian) | Zbl