Some inequalities between the best simultaneous approximation and the modulus of continuity in a weighted Bergman space
    
    
  
  
  
      
      
      
        
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 165-174
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Some inequalities between the best simultaneous approximation of functions and their intermediate derivatives, and the modulus of continuity in a weighted Bergman space are obtained. When the weight function is $\gamma(\rho)=\rho^\alpha,\ \alpha>0$, some sharp inequalities between the best simultaneous approximation and an  $m$th order modulus of continuity averaged with the given weight are proved. For a specific class of functions, the upper bound of the best simultaneous approximation in the space $B_{2,\gamma_{1}},$ $\gamma_{1}(\rho)=\rho^{\alpha},\ \alpha>0$, is found. Exact values of several $n$-widths are calculated for the classes of functions $W_{p}^{(r)}(\omega_{m},q)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
The best simultaneous approximation, modulus of continuity, upper bound, $n$-widths.
                    
                    
                    
                  
                
                
                @article{UMJ_2023_9_2_a13,
     author = {Muqim S. Saidusajnov},
     title = {Some inequalities between the best simultaneous approximation and the modulus of continuity in a weighted {Bergman} space},
     journal = {Ural mathematical journal},
     pages = {165--174},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a13/}
}
                      
                      
                    TY - JOUR AU - Muqim S. Saidusajnov TI - Some inequalities between the best simultaneous approximation and the modulus of continuity in a weighted Bergman space JO - Ural mathematical journal PY - 2023 SP - 165 EP - 174 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a13/ LA - en ID - UMJ_2023_9_2_a13 ER -
%0 Journal Article %A Muqim S. Saidusajnov %T Some inequalities between the best simultaneous approximation and the modulus of continuity in a weighted Bergman space %J Ural mathematical journal %D 2023 %P 165-174 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a13/ %G en %F UMJ_2023_9_2_a13
Muqim S. Saidusajnov. Some inequalities between the best simultaneous approximation and the modulus of continuity in a weighted Bergman space. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 165-174. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a13/