Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 157-164

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Chebyshev's problem on polynomials that deviate least from zero with respect to $L^p$-means on the interval $[-1;1]$ with a constraint on the location of roots of polynomials. More precisely, we consider the problem on the set $\mathcal{P}_n(D_R)$ of polynomials of degree $n$ that have unit leading coefficient and do not vanish in an open disk of radius $R \ge 1$. An exact solution is obtained for the geometric mean (for $p=0$) for all $R \ge 1$; and for $0$ for all $R \ge 1$ in the case of polynomials of even degree. For $0$ and $R\ge 1$, we obtain two-sided estimates of the value of the least deviation.
Keywords: Algebraic polynomials, Chebyshev polynomials, сonstraints on the roots of a polynomial.
@article{UMJ_2023_9_2_a12,
     author = {Alena E. Rokina},
     title = {Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $,  with a constraint on the location of},
     journal = {Ural mathematical journal},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/}
}
TY  - JOUR
AU  - Alena E. Rokina
TI  - Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $,  with a constraint on the location of
JO  - Ural mathematical journal
PY  - 2023
SP  - 157
EP  - 164
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/
LA  - en
ID  - UMJ_2023_9_2_a12
ER  - 
%0 Journal Article
%A Alena E. Rokina
%T Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $,  with a constraint on the location of
%J Ural mathematical journal
%D 2023
%P 157-164
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/
%G en
%F UMJ_2023_9_2_a12
Alena E. Rokina. Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $,  with a constraint on the location of. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/