Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 157-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Chebyshev's problem on polynomials that deviate least from zero with respect to $L^p$-means on the interval $[-1;1]$ with a constraint on the location of roots of polynomials. More precisely, we consider the problem on the set $\mathcal{P}_n(D_R)$ of polynomials of degree $n$ that have unit leading coefficient and do not vanish in an open disk of radius $R \ge 1$. An exact solution is obtained for the geometric mean (for $p=0$) for all $R \ge 1$; and for $0$ for all $R \ge 1$ in the case of polynomials of even degree. For $0$ and $R\ge 1$, we obtain two-sided estimates of the value of the least deviation.
Keywords: Algebraic polynomials, Chebyshev polynomials, сonstraints on the roots of a polynomial.
@article{UMJ_2023_9_2_a12,
     author = {Alena E. Rokina},
     title = {Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of},
     journal = {Ural mathematical journal},
     pages = {157--164},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/}
}
TY  - JOUR
AU  - Alena E. Rokina
TI  - Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of
JO  - Ural mathematical journal
PY  - 2023
SP  - 157
EP  - 164
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/
LA  - en
ID  - UMJ_2023_9_2_a12
ER  - 
%0 Journal Article
%A Alena E. Rokina
%T Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of
%J Ural mathematical journal
%D 2023
%P 157-164
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/
%G en
%F UMJ_2023_9_2_a12
Alena E. Rokina. Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a12/

[1] Akhiezer N. I., Lekcii po teorii approksimacii [Lectures on Approximation Theory], Nauka, Moscow, 1965, 408 pp. (in Russian)

[2] Akopyan R. R., “Turán's inequality in $H_2$ for algebraic polynomials with restrictions to their zeros”, East J. Approx., 6:1 (2000), 103–124 | MR | Zbl

[3] Akopyan R. R., “Certain extremal problems for algebraic polynomials which do not vanish in a disk”, East J. Approx., 9:2 (2003), 139–150 | MR | Zbl

[4] Arestov V. V., “Integral inequalities for algebraic polynomials with a restriction on their zeros”, Anal. Math., 17:1 (1991), 11–20 | DOI | MR | Zbl

[5] Chebyshev P. L., “Theory of the mechanisms known as parallelograms”, Chebyshev P.L. Collected works, v. II: Mathematical Analysis, Acad. Sci. USSR, Moscow, Leningrad, 1947, 23–51 (in Russian)

[6] De Bruijn N. G., “Inequalities concerning polynomials in the complex domain”, Nederl. Akad. Watensh., Proc., 50 (1947), 1265–1272 | Zbl

[7] Erdélyi T., “Markov-type inequalities for constrained polynomials with complex coefficients”, Illinois J. Math., 42:4 (1998), 544–563 | DOI | MR | Zbl

[8] Glazyrina P. Yu., “The Markov brothers inequality in $L_0$-space on an interval”, Math. Notes, 78:1 (2005), 53–58 | DOI | MR | Zbl

[9] Glazyrina P. Yu., Révész Sz. Gy., “Turán type oscillation inequalities in $L^q$ norm on the boundary of convex domains”, Math. Inequal. Appl., 20:1 (2017), 149–180 | DOI | MR | Zbl

[10] Glazyrina P. Yu., Révész Sz. Gy., “Turán–Erőd type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm”, Proc. Steklov Inst. Math., 303 (2018), 78–104 | DOI | MR | Zbl

[11] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Transl. Math. Monogr., no. 26, American Math. Soc., Providence, R. I., 1969, 676 pp. | Zbl

[12] Halász G., “Markov-type inequalities for polynomials with restricted zeros”, J. Approx. Theory, 101 (1999), 148–155 | DOI | MR | Zbl

[13] Hardy G. H., Littlewood J. E. Pólya G., Inequalities, Cambridge Univ. Press, Cambridge, 1934 | Zbl

[14] Korneychuk N. P., Babenko V. F., Ligun A. A., Ekstremal'nye svojstva polinomov i splajnov [Extreme Properties of Polynomials and Splines], Scientific Opinion, Kyiv, 1992, 304 pp. (in Russian)

[15] Lax P. D., “Proof of the conjecture of P. Erdős on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50 (1947), 509–513 | DOI

[16] Malik M. A., “On the derivative of a polynomial”, J. London Math. Soc., s2-1:1 (1969), 57–60 | DOI | Zbl

[17] Pestovskaya A. E., “Polynomials least deviating from zero with a constraint on the location of roots”, Trudy Inst. Mat. Mekh. UrO RAN, 28:3 (2022), 166–175 | DOI | MR

[18] Rahman Q. I., Schmeisser G., “$L^p$ inequalities for polynomials”, J. Approx. Theory, 53:1 (1988), 26–33 | DOI | MR

[19] Smirnov V. I., Lebedev N. A., Functions of a Complex Variable (Constructive Theory), Iliffe Books Ltd., London, 1968, 488 pp. | Zbl

[20] Suetin P. K., Klassicheskie ortogonal'nye mnogochleny [The Classical Orthogonal Polynomials], Nauka, Moscow, 1976, 327 pp. (in Russian)

[21] Turán P., “Über die Ableitung von Polynomen”, Compos. Math., 7 (1939), 89–95 (in German) | Zbl