Convexity of reachable sets of quasilinear systems
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 141-156

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates convexity of reachable sets for quasilinear systems under integral quadratic constraints. Drawing inspiration from B.T. Polyak's work on small Hilbert ball image under nonlinear mappings, the study extends the analysis to scenarios where a small nonlinearity exists on the system's right-hand side. At zero value of a small parameter, the quasilinear system turns into a linear system and its reachable set is convex. The investigation reveals that to maintain convexity of reachable sets of these systems, the nonlinear mapping's derivative must be Lipschitz continuous. The proof methodology follows a Polyak's scheme. The paper's structure encompasses problem formulation, exploration of parameter linear mapping and image transformation, application to quasilinear control systems, and concludes with illustrative examples.
Keywords: Quasilinear control system, small parameter, integral constraints, reachable sets, convexity.
@article{UMJ_2023_9_2_a11,
     author = {Ivan O. Osipov},
     title = {Convexity of reachable sets  of quasilinear systems},
     journal = {Ural mathematical journal},
     pages = {141--156},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a11/}
}
TY  - JOUR
AU  - Ivan O. Osipov
TI  - Convexity of reachable sets  of quasilinear systems
JO  - Ural mathematical journal
PY  - 2023
SP  - 141
EP  - 156
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a11/
LA  - en
ID  - UMJ_2023_9_2_a11
ER  - 
%0 Journal Article
%A Ivan O. Osipov
%T Convexity of reachable sets  of quasilinear systems
%J Ural mathematical journal
%D 2023
%P 141-156
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a11/
%G en
%F UMJ_2023_9_2_a11
Ivan O. Osipov. Convexity of reachable sets  of quasilinear systems. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 141-156. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a11/