@article{UMJ_2023_9_2_a11,
author = {Ivan O. Osipov},
title = {Convexity of reachable sets of quasilinear systems},
journal = {Ural mathematical journal},
pages = {141--156},
year = {2023},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a11/}
}
Ivan O. Osipov. Convexity of reachable sets of quasilinear systems. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 141-156. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a11/
[1] Al'brekht E. H., “The optimal control of the motion of quasilinear systems”, Differ. Uravn., 5:3 (1969), 430–442 (in Russian) | Zbl
[2] Al'brekht E. H., “The coming together of quasilinear objects in the regular case”, Differ. Uravn., 7:7 (1971), 1171–1178 (in Russian) | Zbl
[3] Albrecht E. G., Metod Lyapunova-Puankare v zadachah optimalnogo upravleniya, Diss. dokt. fiz.-mat. nauk, Sverdlovsk, 1986, 280 pp. (in Russian)
[4] Calvet J.-P., Arkun Y., “Design of P and PI stabilizing controllers for quasi-linear system.”, Comput. Chem. Eng., 14:4–5 (1990), 415–426 | DOI
[5] Ching Sh., Eun Yo., Gokcek C., Kabamba P. T., Meerkov S. M., Quasilinear Control: Performance Analysis and Design of Feedback Systems with Nonlinear Sensors and Actuators, Cambridge University Press, Cambridge, 2010, 282 pp. | DOI
[6] Dauer J. P., “Nonlinear perturbations of quasi-linear control systems”, J. Math. Anal. Appl., 54:3 (1976), 717–725 | DOI | MR | Zbl
[7] Filippov A. F., Differential Equations with Discontinuous Righthand Sides, Springer, Dordrecht, 1988, 304 pp. | DOI
[8] Filippov A. F., Vvedenie v teoriju differencial'nyh uravnenij [Introduction to the theory of differential equations], Comkniga, Moscow, 2007, 240 pp. (in Russian)
[9] Gabasov R. F., Kalinin A. I., Kirillova F. M., Lavrinovich L. I., “On asymptotic optimization methods for quasilinear control systems”, Trudy Inst. Mat. Mekh. UrO RAN, 25:3 (2019), 62–72 | DOI
[10] Guo Y., Kabamba P. T., Meerkov S. M., Ossareh H. R., Tang C. Y., “Quasilinear control of wind farm power output”, IEEE Trans. Control Syst. Technol., 23:4 (2015), 1555–1562 | DOI
[11] Gusev M. I., Zykov I. V., “On Extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proc. Steklov Inst. Math., 300:Suppl. 1 (2018), 114–125 | DOI | MR
[12] Gusev M. I., “The limits of applicability of the linearization method in calculating small-time reachable sets”, Ural Math. J., 6:1 (2020), 71–83 | DOI | MR | Zbl
[13] Gusev M. I., Osipov I. O., “Asymptotic behavior of reachable sets on small time intervals”, Proc. Steklov Inst. Math., 309:Suppl. 1 (2020), S52–S64 | DOI
[14] Gusev M. I., Osipov I. O., “On a local synthesis problem for nonlinear systems with integral constraints”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 171–186 | DOI | Zbl
[15] Kalinin A. I., Lavrinovich L. I., “Asymptotic minimization method of the integral quadratic functional on the trajectories of a quasilinear dynamical system”, Dokl. NAN Belarusi, 62:5 (2018), 519–524 (in Russian) | DOI | Zbl
[16] Kiselev Yu. N., “An asymptotic solution of the problem of time-optimal control systems which are close to linear ones”, Soviet Math. Dokl., 9:5 (1968), 1093–1097 | Zbl
[17] Krasovskii N. N., Teoriya upravleniya dvizheniem [Theory of Control of Motion], Nauka, Moscow, 1968, 476 pp. (in Russian)
[18] Kremlev A. G., “Control of a quasilinear system under indeterminate initial conditions”, Differ. Uravn., 16:11 (1980), 1967—1979 (in Russian) | Zbl
[19] Osipov I. O., “On the convexity of the reachable set with respect to a part of coordinates at small time intervals”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021), 210–225 | DOI | Zbl
[20] Polyak B. T., “Gradient methods for solving equations and inequalities”, USSR Comput. Math. Math. Phys., 4:6 (1964), 17–32 | DOI
[21] Polyak B. T., “Convexity of nonlinear image of a small ball with applications to optimization”, Set-Valued Analysis, 9 (2001), 159–168 | DOI | MR | Zbl
[22] Polyak B. T., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynam. Contin. Discrete Impuls. Systems Ser. A Math. Anal., 11:Suppl. 2–3 (2004), 255–267 | Zbl
[23] Subbotin A. I., “Control of motion of a quasilinear system”, Differ. Uravn., 3:7 (1967), 1113–1118 (in Russian) | Zbl
[24] Zykov I. V., Osipov I. O., A program for constructing the reachable sets of nonlinear systems with integral control constraints by the Monte Carlo method, Certificates of State Registration of a Computer Program or a Database, No. 2020661557, 2020
[25] Zykov I. V., “An algorithm for constructing reachable sets for systems with multiple integral constraints.”, Mathematical Analysis with Applications: Int. Conf. CONCORD-90 (Ekaterinburg, July 2018), Springer Proc. Math. Stat., no. 318, eds. Pinelas S., Kim A., Vlasov V., Springer, Cham, 2020, 51–60 | DOI | MR | Zbl
[26] Zykov I. V., “External estimates of reachable sets for control systems with integral constraints”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 190 (2021), 107–114 | DOI