On two-sided unidirectional mean value inequality in a Fréchet smooth space
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 132-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a new unidirectional mean value inequality for the Fréchet subdifferential of a continuous function. This mean value inequality finds an intermediate point and localizes its value both from above and from below; for this reason, the inequality is called two-sided. The inequality is considered for a continuous function defined on a Fréchet smooth space. This class of Banach spaces includes the case of a reflexive space and the case of a separable Asplund space. As some application of these inequalities, we give an upper estimate for the Fréchet subdifferential of the upper limit of continuous functions defined on a reflexive space.
Keywords: Smooth Banach space, unidirectional mean value inequality, upper limit of continuous functions.
Mots-clés : Fréchet subdifferential
@article{UMJ_2023_9_2_a10,
     author = {Dmitry V. Khlopin},
     title = {On two-sided unidirectional mean value inequality in a {Fr\'echet} smooth space},
     journal = {Ural mathematical journal},
     pages = {132--140},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a10/}
}
TY  - JOUR
AU  - Dmitry V. Khlopin
TI  - On two-sided unidirectional mean value inequality in a Fréchet smooth space
JO  - Ural mathematical journal
PY  - 2023
SP  - 132
EP  - 140
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a10/
LA  - en
ID  - UMJ_2023_9_2_a10
ER  - 
%0 Journal Article
%A Dmitry V. Khlopin
%T On two-sided unidirectional mean value inequality in a Fréchet smooth space
%J Ural mathematical journal
%D 2023
%P 132-140
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a10/
%G en
%F UMJ_2023_9_2_a10
Dmitry V. Khlopin. On two-sided unidirectional mean value inequality in a Fréchet smooth space. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 132-140. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a10/

[1] Aussel D., Corvellec J.-N., Lassonde M., “Nonsmooth constrained optimization and multidirectional mean value inequalities”, SIAM J. Optim., 9:3 (1999), 690–706 | DOI | MR | Zbl

[2] Borwein J. M., Fitzpatrick S. P., Giles J. R., “The differentiability of real functions on normed linear space using generalized subgradients”, J. Math. Anal. Appl., 128:2 (1987), 512–534 | DOI | MR | Zbl

[3] Borwein J. M., Vanderwerff J. D., Convex Functions: Constructions, Characterizations and Counterexamples, Cambridge University Press, Cambridge, 2010, x+521 pp. | Zbl

[4] Borwein J. M., Zhu Q. J., Techniques of Variational Analysis, New York, Springer-Verlag, 2005, vi+362 pp. | DOI | Zbl

[5] Clarke F., Ledyaev Yu. S., “New formulas for finite increments”, Dokl. Math., 48:1 (1994), 75–79 | MR

[6] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998, xiv+276 pp. | DOI | Zbl

[7] Fabian M., Mordukhovich B. S., “Nonsmooth characterizations of Asplund spaces and smooth variational principles”, Set-Valued Anal., 6 (1998), 381–406 | DOI | MR | Zbl

[8] Gomoyunov M. I., Plaksin A. R., “Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations”, J. Funct. Anal., 285:11 (2023), 110155 | DOI | Zbl

[9] Ioffe A. D., Variational Analysis of Regular Mappings: Theory and Applications., Springer Monogr, Math. Springer, Cham, 2017, xxi+495 pp. | DOI | Zbl

[10] Kipka R., Ledyaev Yu. S., “A generalized multidirectional mean value inequality and dynamic optimization”, Optimization, 68:7 (2019), 1365–1389 | DOI | MR | Zbl

[11] Khlopin D., “Necessary conditions in infinite-horizon control problems that need no asymptotic assumptions”, Set-Valued Var. Anal., 31:1 (2023), 8 | DOI | MR | Zbl

[12] Ledyaev Yu. S., Treiman J. S., “Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions.”, Russian Math. Surveys, 67:2 (2012), 345–373 | DOI | MR | Zbl

[13] Mordukhovich B. S., Variational Analysis and Generalized Differentiation {I}: Basic Theory, Springer-Verlag, Berlin, 2006, xxii+579 pp. | DOI

[14] Mordukhovich B. S., Variational Analysis and Applications, Springer Monogr. Math., Springer, Cham, 2018, xix+622 pp. | DOI | Zbl

[15] Rockafellar R. T., Wets R. J. B., Variational Analysis, Springer-Verlag, Berlin, 2009, vii+735 pp. | DOI | Zbl

[16] Subbotin A. I., “On a property of the subdifferential”, Math. USSR-Sb., 74:1 (1993), 63–78 | DOI | MR | Zbl

[17] Trang N. T. Q., “A note on an approximate mean value theorem for Fréchet subgradients”, Nonlinear Anal., 75:1 (2012), 380–383 | DOI | MR | Zbl

[18] Zhu Q. J., “The equivalence of several basic theorems for subdifferentials”, Set-Valued Anal., 6 (1998), 171–185 | DOI | MR | Zbl