Countable compactness modulo an ideal of natural numbers
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 28-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we introduce the idea of $I$-compactness as a covering property through ideals of $\mathbb N$ and regardless of the $I$-convergent sequences of points. The frameworks of $s$-compactness, compactness and sequential compactness are compared to the structure of $I$-compact space. We began our research by looking at some fundamental characteristics, such as the nature of a subspace of an $I$-compact space, then investigated its attributes in regular and separable space. Finally, various features resembling finite intersection property have been investigated, and a connection between $I$-compactness and sequential $I$-compactness has been established.
Keywords: ideal, open cover, compact space
Mots-clés : $I$-convergence.
@article{UMJ_2023_9_2_a1,
     author = {Prasenjit Bal and Debjani Rakshit and Susmita Sarkar},
     title = {Countable compactness modulo an ideal of natural numbers},
     journal = {Ural mathematical journal},
     pages = {28--35},
     year = {2023},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/}
}
TY  - JOUR
AU  - Prasenjit Bal
AU  - Debjani Rakshit
AU  - Susmita Sarkar
TI  - Countable compactness modulo an ideal of natural numbers
JO  - Ural mathematical journal
PY  - 2023
SP  - 28
EP  - 35
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/
LA  - en
ID  - UMJ_2023_9_2_a1
ER  - 
%0 Journal Article
%A Prasenjit Bal
%A Debjani Rakshit
%A Susmita Sarkar
%T Countable compactness modulo an ideal of natural numbers
%J Ural mathematical journal
%D 2023
%P 28-35
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/
%G en
%F UMJ_2023_9_2_a1
Prasenjit Bal; Debjani Rakshit; Susmita Sarkar. Countable compactness modulo an ideal of natural numbers. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 28-35. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/

[1] Bal P., “On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover”, Hacet. J. Math. Stat., 52:3 (2023), 630–639 | MR

[2] Bal P., Bhowmik S., “Star-selection principle: another new direction”, J. Indian Math. Soc., 84:1–2 (2017), 1–6 | DOI | MR | Zbl

[3] Bal P., Bhowmik S., “On $R$-star-Lindelöf spaces”, Palest. J. Math., 6:2 (2017), 480–486 | MR | Zbl

[4] Bal P., Bhowmik S., “Some new star-selection principles in topology”, Filomat, 31:13 (2017), 4041–4050 | DOI | MR | Zbl

[5] Bal P., Bhowmik S., Gauld D., “On Selectively star-Lindelöf properties”, J. Indian Math. Soc., 85:3–4 (2018), 291–304 | DOI | MR | Zbl

[6] Bal P., Kočinac L. D. R., “On selectively star-ccc spaces”, Topology Appl., 281 (2020), 107184 | DOI | MR | Zbl

[7] Bal P., Rakshit D., “A variation of the class of statistical $\gamma$-covers”, Topol. Algebra Appl., 11:1 (2023), 20230101 | DOI | MR

[8] Bal P., Rakshit D., Sarkar S., “On statistical compactness.”, Iran. J. Math. Sci. Inform., 2023 (to appear)

[9] Bal P., De R., “On strongly star semi-compactness of topological spaces”, Khayyam J. Math., 9:1 (2023), 54–60 | DOI | MR | Zbl

[10] Balcerzak M., Filipczak M. L., “Ideal convergence of sequences and some of its applications”, Folia Math., 19:1 (2017), 3–8 | MR | Zbl

[11] ÇakallıH., “Sequential definitions of compactness.”, Appl. Math. Lett., 21:6 (2008), 594–598 | DOI | MR

[12] Das P., “Certain types of open covers and selection principles using ideals”, Houston J. Math., 39:2 (2013), 637–650 | MR | Zbl

[13] Debnath S., Rakshit D., “On $I$-statistical convergence”, Iran. J. Math. Sci. Inform., 13:2 (2018), 101–109 | MR | Zbl

[14] Di Maio G., Kočinak L. D. R., “Statistical convergence in topology”, Topology Appl., 156:1 (2008), 28–45 | DOI | MR | Zbl

[15] van Douwen E. K., Reed G. M., Roscoe A. W., Tree I. J., “Star covering properties”, Topology Appl., 39:1 (1991), 71–103 | DOI | MR | Zbl

[16] Engelking R., General Topology, Sigma Ser. Pure Math. Rev. compl. ed., Heldermann, Berlin, 1989, 529 pp. | Zbl

[17] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241—244 (in French) | DOI | MR | Zbl

[18] Gupta A., Kaur R., “Compact spaces with respect to an ideal”, Int. J. Pure Appl. Math., 92:3 (2014), 443–448 | DOI | Zbl

[19] Kostyrko P., Salat T., Wilczynski W., “$I$-convergence”, Real Anal. Exchange, 26:2 (2000), 669–686 | DOI | MR

[20] Lahiri B. K., Das P., “$I$ and $I^*$-convergence in topological spaces”, Math. Bohem., 130:2 (2005), 153–160 | DOI | MR | Zbl

[21] Schoenberg I. J., “The integrability of certain functions and related summability methods”, Amer. Math. Monthly, 66:5 (1959), 361–375 | DOI | MR | Zbl

[22] Singha M., Roy S., Compactness with Ideals, arXiv: [math.GN] 2107.00050