Countable compactness modulo an ideal of natural numbers
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 28-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we introduce the idea of $I$-compactness as a covering property through ideals of $\mathbb N$ and regardless of the $I$-convergent sequences of points. The frameworks of $s$-compactness, compactness and sequential compactness are compared to the structure of $I$-compact space. We began our research by looking at some fundamental characteristics, such as the nature of a subspace of an $I$-compact space, then investigated its attributes in regular and separable space. Finally, various features resembling finite intersection property have been investigated, and a connection between $I$-compactness and sequential $I$-compactness has been established.
Keywords: ideal, open cover, compact space
Mots-clés : $I$-convergence.
@article{UMJ_2023_9_2_a1,
     author = {Prasenjit Bal and Debjani Rakshit and Susmita Sarkar},
     title = {Countable compactness modulo an ideal of natural numbers},
     journal = {Ural mathematical journal},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/}
}
TY  - JOUR
AU  - Prasenjit Bal
AU  - Debjani Rakshit
AU  - Susmita Sarkar
TI  - Countable compactness modulo an ideal of natural numbers
JO  - Ural mathematical journal
PY  - 2023
SP  - 28
EP  - 35
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/
LA  - en
ID  - UMJ_2023_9_2_a1
ER  - 
%0 Journal Article
%A Prasenjit Bal
%A Debjani Rakshit
%A Susmita Sarkar
%T Countable compactness modulo an ideal of natural numbers
%J Ural mathematical journal
%D 2023
%P 28-35
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/
%G en
%F UMJ_2023_9_2_a1
Prasenjit Bal; Debjani Rakshit; Susmita Sarkar. Countable compactness modulo an ideal of natural numbers. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 28-35. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/