Mots-clés : $I$-convergence.
@article{UMJ_2023_9_2_a1,
author = {Prasenjit Bal and Debjani Rakshit and Susmita Sarkar},
title = {Countable compactness modulo an ideal of natural numbers},
journal = {Ural mathematical journal},
pages = {28--35},
year = {2023},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/}
}
Prasenjit Bal; Debjani Rakshit; Susmita Sarkar. Countable compactness modulo an ideal of natural numbers. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 28-35. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a1/
[1] Bal P., “On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover”, Hacet. J. Math. Stat., 52:3 (2023), 630–639 | MR
[2] Bal P., Bhowmik S., “Star-selection principle: another new direction”, J. Indian Math. Soc., 84:1–2 (2017), 1–6 | DOI | MR | Zbl
[3] Bal P., Bhowmik S., “On $R$-star-Lindelöf spaces”, Palest. J. Math., 6:2 (2017), 480–486 | MR | Zbl
[4] Bal P., Bhowmik S., “Some new star-selection principles in topology”, Filomat, 31:13 (2017), 4041–4050 | DOI | MR | Zbl
[5] Bal P., Bhowmik S., Gauld D., “On Selectively star-Lindelöf properties”, J. Indian Math. Soc., 85:3–4 (2018), 291–304 | DOI | MR | Zbl
[6] Bal P., Kočinac L. D. R., “On selectively star-ccc spaces”, Topology Appl., 281 (2020), 107184 | DOI | MR | Zbl
[7] Bal P., Rakshit D., “A variation of the class of statistical $\gamma$-covers”, Topol. Algebra Appl., 11:1 (2023), 20230101 | DOI | MR
[8] Bal P., Rakshit D., Sarkar S., “On statistical compactness.”, Iran. J. Math. Sci. Inform., 2023 (to appear)
[9] Bal P., De R., “On strongly star semi-compactness of topological spaces”, Khayyam J. Math., 9:1 (2023), 54–60 | DOI | MR | Zbl
[10] Balcerzak M., Filipczak M. L., “Ideal convergence of sequences and some of its applications”, Folia Math., 19:1 (2017), 3–8 | MR | Zbl
[11] ÇakallıH., “Sequential definitions of compactness.”, Appl. Math. Lett., 21:6 (2008), 594–598 | DOI | MR
[12] Das P., “Certain types of open covers and selection principles using ideals”, Houston J. Math., 39:2 (2013), 637–650 | MR | Zbl
[13] Debnath S., Rakshit D., “On $I$-statistical convergence”, Iran. J. Math. Sci. Inform., 13:2 (2018), 101–109 | MR | Zbl
[14] Di Maio G., Kočinak L. D. R., “Statistical convergence in topology”, Topology Appl., 156:1 (2008), 28–45 | DOI | MR | Zbl
[15] van Douwen E. K., Reed G. M., Roscoe A. W., Tree I. J., “Star covering properties”, Topology Appl., 39:1 (1991), 71–103 | DOI | MR | Zbl
[16] Engelking R., General Topology, Sigma Ser. Pure Math. Rev. compl. ed., Heldermann, Berlin, 1989, 529 pp. | Zbl
[17] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3–4 (1951), 241—244 (in French) | DOI | MR | Zbl
[18] Gupta A., Kaur R., “Compact spaces with respect to an ideal”, Int. J. Pure Appl. Math., 92:3 (2014), 443–448 | DOI | Zbl
[19] Kostyrko P., Salat T., Wilczynski W., “$I$-convergence”, Real Anal. Exchange, 26:2 (2000), 669–686 | DOI | MR
[20] Lahiri B. K., Das P., “$I$ and $I^*$-convergence in topological spaces”, Math. Bohem., 130:2 (2005), 153–160 | DOI | MR | Zbl
[21] Schoenberg I. J., “The integrability of certain functions and related summability methods”, Amer. Math. Monthly, 66:5 (1959), 361–375 | DOI | MR | Zbl
[22] Singha M., Roy S., Compactness with Ideals, arXiv: [math.GN] 2107.00050