Sum signed graphs – II
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 121-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the study of sum signed graphs is continued. The balancing and switching nature of the graphs are analyzed. The concept of $rna$ number is revisited and an important relation between the number and its complement is established.
Keywords: balanced signed graph, $rna$ number, $rna$ complement number.
@article{UMJ_2023_9_1_a9,
     author = {Athir P. Ranjith and Joseph Varghese Kureethara},
     title = {Sum signed graphs {\textendash} {II}},
     journal = {Ural mathematical journal},
     pages = {121--126},
     year = {2023},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a9/}
}
TY  - JOUR
AU  - Athir P. Ranjith
AU  - Joseph Varghese Kureethara
TI  - Sum signed graphs – II
JO  - Ural mathematical journal
PY  - 2023
SP  - 121
EP  - 126
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a9/
LA  - en
ID  - UMJ_2023_9_1_a9
ER  - 
%0 Journal Article
%A Athir P. Ranjith
%A Joseph Varghese Kureethara
%T Sum signed graphs – II
%J Ural mathematical journal
%D 2023
%P 121-126
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a9/
%G en
%F UMJ_2023_9_1_a9
Athir P. Ranjith; Joseph Varghese Kureethara. Sum signed graphs – II. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 121-126. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a9/

[1] Acharya B. D., “Spectral criterion for cycle balance in networks”, J. Graph Theory, 4:1 (1980), 1–11 | DOI | MR | Zbl

[2] Acharya M., Kureethara J. V., Parity Labeling in Signed Graphs, 2021, 10 pp. [math.CO] arXiv:2012.07737v2 | MR

[3] Acharya M., Kureethara J. V., Zaslavasky T., “Characterizations of some parity signed graphs”, Australas. J. Combin., 81:1 (2021), 89–100 | MR | Zbl

[4] Bhat M. A., Pirzada S., “On equienergetic signed graphs”, Discrete Appl. Math., 189 (2015), 1–7 | DOI | MR | Zbl

[5] Harary F. On the notion of balance of a signed graph, Michigan Math. J., 2:2 (1953/1954), 143–146 | DOI | MR

[6] Harary F., “Structural duality”, Behavioural Sciences, 2:4 (1957), 255–265 | DOI | MR

[7] Ranjith A. P., Kureethara J. V., “Sum signed graphs - I”, AIP Conf. Proc., 2261:1 (2020), 030047 | DOI

[8] Sudev N. K., Germina K. A., “A study on topological integer additive set-labeling of graphs”, Electron. J. Graph Theory Appl., 3:1 (2015), 70–84 | DOI | MR | Zbl

[9] Zaslavsky T., “Signed graphs”, Discrete Appl. Math., 4:1 (1982), 47–74 | DOI | MR | Zbl