On Cauchy-type bounds for the eigenvalues of a special class of matrix polynomials
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 113-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb{C}^{m\times m}$ be the set of all $m\times m$ matrices whose entries are in $\mathbb{C},$ the set of complex numbers. Then $P(z):=\sum\limits_{j=0}^nA_jz^j,~A_j\in \mathbb{C}^{m\times m},~0\leq j\leq n$ is called a matrix polynomial. If $A_{n}\neq 0$, then $P(z)$ is said to be a matrix polynomial of degree $n.$ In this paper we prove some results for the bound estimates of the eigenvalues of some lacunary type of matrix polynomials.
Keywords: eigenvalue, positive-definite matrix, Cauchy's theorem, spectral radius.
Mots-clés : matrix polynomial
@article{UMJ_2023_9_1_a8,
     author = {Zahid Bashir Monga and Wali Mohammad Shah},
     title = {On {Cauchy-type} bounds for the eigenvalues of a special class of matrix polynomials},
     journal = {Ural mathematical journal},
     pages = {113--120},
     year = {2023},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a8/}
}
TY  - JOUR
AU  - Zahid Bashir Monga
AU  - Wali Mohammad Shah
TI  - On Cauchy-type bounds for the eigenvalues of a special class of matrix polynomials
JO  - Ural mathematical journal
PY  - 2023
SP  - 113
EP  - 120
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a8/
LA  - en
ID  - UMJ_2023_9_1_a8
ER  - 
%0 Journal Article
%A Zahid Bashir Monga
%A Wali Mohammad Shah
%T On Cauchy-type bounds for the eigenvalues of a special class of matrix polynomials
%J Ural mathematical journal
%D 2023
%P 113-120
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a8/
%G en
%F UMJ_2023_9_1_a8
Zahid Bashir Monga; Wali Mohammad Shah. On Cauchy-type bounds for the eigenvalues of a special class of matrix polynomials. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a8/

[1] Bini D. A., Noferini V., Sharify M., “Locating the eigenvalues of matrix polynomials.”, SIAM J. Matrix Anal. Appl., 34:4 (2013), 1708–1727 | DOI | MR | Zbl

[2] Cauchy A.-L., Mémoire sur la Résolution des Équations numériques et sur la Théorie de l'Élimination, de Bure Frères, Paris, 1829, 64 pp. (in French)

[3] Dehmer M., Mowshowitz A., “Bounds on the moduli of polynomial zeros.”, Appl. Math. Comp., 218:8 (2011), 4128–4137 | DOI | MR | Zbl

[4] Gohberg I., Lancaster P., Rodman L., Matrix Polynomials, Academic Press, New York, 1982, 433 pp. | MR | Zbl

[5] Higham N. J., Tisseur F., “Bounds for eigenvalues of matrix polynomials”, Linear Algebra Appl., 358:1–3 (2003), 5–22 | DOI | MR | Zbl

[6] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge University Press, Cambridge, 2013, 643 pp. | DOI | MR | Zbl

[7] Marden M., Geometry of Polynomials, v. 3, Math. Surveys Monogr., American Mathematical Society, Providence, RI, 1966, 243 pp. | MR

[8] Melman A., “Generalization and variations of Pellet's theorem for matrix polynomials”, Linear Algebra Appl., 439:5 (2013), 1550–1567 | DOI | MR | Zbl

[9] Tisseur F., Meerbergen K., “The quadratic eigenvalue problem”, SIAM Review, 43:2 (2001), 235–286 | MR | Zbl