On Cauchy-type bounds for the eigenvalues of a special class of matrix polynomials
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 113-120
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbb{C}^{m\times m}$ be the set of all $m\times m$ matrices whose entries are in $\mathbb{C},$ the set of complex numbers. Then $P(z):=\sum\limits_{j=0}^nA_jz^j,~A_j\in \mathbb{C}^{m\times m},~0\leq j\leq n$ is called a matrix polynomial. If $A_{n}\neq 0$, then $P(z)$ is said to be a matrix polynomial of degree $n.$ In this paper we prove some results for the bound estimates of the eigenvalues of some lacunary type of matrix polynomials.
Keywords:
eigenvalue, positive-definite matrix, Cauchy's theorem, spectral radius.
Mots-clés : matrix polynomial
Mots-clés : matrix polynomial
@article{UMJ_2023_9_1_a8,
author = {Zahid Bashir Monga and Wali Mohammad Shah},
title = {On {Cauchy-type} bounds for the eigenvalues of a special class of matrix polynomials},
journal = {Ural mathematical journal},
pages = {113--120},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a8/}
}
TY - JOUR AU - Zahid Bashir Monga AU - Wali Mohammad Shah TI - On Cauchy-type bounds for the eigenvalues of a special class of matrix polynomials JO - Ural mathematical journal PY - 2023 SP - 113 EP - 120 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a8/ LA - en ID - UMJ_2023_9_1_a8 ER -
Zahid Bashir Monga; Wali Mohammad Shah. On Cauchy-type bounds for the eigenvalues of a special class of matrix polynomials. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a8/