Mots-clés : polynomial
@article{UMJ_2023_9_1_a7,
author = {Mohd Yousf Mir and Shah Lubn Wali and Wali Mohammad Shah},
title = {Inequalities for a class of meromorphic functions whose zeros are within or outside a given disk},
journal = {Ural mathematical journal},
pages = {104--112},
year = {2023},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a7/}
}
TY - JOUR AU - Mohd Yousf Mir AU - Shah Lubn Wali AU - Wali Mohammad Shah TI - Inequalities for a class of meromorphic functions whose zeros are within or outside a given disk JO - Ural mathematical journal PY - 2023 SP - 104 EP - 112 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a7/ LA - en ID - UMJ_2023_9_1_a7 ER -
%0 Journal Article %A Mohd Yousf Mir %A Shah Lubn Wali %A Wali Mohammad Shah %T Inequalities for a class of meromorphic functions whose zeros are within or outside a given disk %J Ural mathematical journal %D 2023 %P 104-112 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a7/ %G en %F UMJ_2023_9_1_a7
Mohd Yousf Mir; Shah Lubn Wali; Wali Mohammad Shah. Inequalities for a class of meromorphic functions whose zeros are within or outside a given disk. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 104-112. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a7/
[1] Aziz A. “A refinement of an inequality of S. Bernstein”, J. Math. Anal. Appl., 142:1 (1989), 226–235 | DOI | MR
[2] Aziz A., Shah W. M. “Some refinements of Bernstein-type inequalities for rational functions”, Glas. Math., 32:1 (1997), 29–37 | MR
[3] Aziz-Ul-Auzeem A., Zargar B. A. “Some properties of rational functions with prescribed poles”, Canad. Math. Bull., 42:4 (1999), 417–426 | DOI | MR | Zbl
[4] Akhter T., Malik S. A., Zargar B. A. “Turán type inequalities for rational functions with prescribed poles”, Int. J. Nonlinear Anal. Appl., 13:1 (2022), 1003–1009 | DOI
[5] Bernstein S. N. “Sur la limitation des dérivées des polynomes”, C. R. Acad. Sci. Paris, 190 (1930), 338–340 (in French)
[6] Dewan K. K., Hans S. “Generalization of certain well-known polynomial inequalities”, J. Math Anal. Appl., 363:1 (2010), 38–41 | DOI | MR | Zbl
[7] Garcia S. R., Mashreghi J., Ross W. T. Finite Blaschke Products and Their Connections, Springer, Cham, 2018, 328 pp. | DOI | MR | Zbl
[8] Hans S., Tripathi D., Mogbademu A. A., Babita Tyagi. “Inequalities for rational functions with prescribed poles”, J. Interdiscip. Math, 21:1 (2018), 157–169 | DOI | Zbl
[9] Lax P. D. “Proof of a conjecture of P. Erdös on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50 (1944), 509–513 | DOI | MR | Zbl
[10] Li X., Mohapatra R. N., Rodriguez R. S. “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc., 51 (1995), 523–531 | DOI | MR | Zbl
[11] Turán P. “Über die ableitung von polynomen”, Compos. Math., 7 (1939), 89—95 (in German) | MR | Zbl
[12] Wali S. L., Shah W. M. “Applications of the Schwarz lemma to inequalities for rational functions with prescribed poles”, J. Anal., 25:1 (2017), 43–53 | DOI | MR | Zbl