@article{UMJ_2023_9_1_a6,
author = {Anar Huseyin and Nesir Huseyin},
title = {On the properties of the set of trajectories of the nonlinear control system with quadratic integral constraint on the control functions},
journal = {Ural mathematical journal},
pages = {93--103},
year = {2023},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a6/}
}
TY - JOUR AU - Anar Huseyin AU - Nesir Huseyin TI - On the properties of the set of trajectories of the nonlinear control system with quadratic integral constraint on the control functions JO - Ural mathematical journal PY - 2023 SP - 93 EP - 103 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a6/ LA - en ID - UMJ_2023_9_1_a6 ER -
%0 Journal Article %A Anar Huseyin %A Nesir Huseyin %T On the properties of the set of trajectories of the nonlinear control system with quadratic integral constraint on the control functions %J Ural mathematical journal %D 2023 %P 93-103 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a6/ %G en %F UMJ_2023_9_1_a6
Anar Huseyin; Nesir Huseyin. On the properties of the set of trajectories of the nonlinear control system with quadratic integral constraint on the control functions. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a6/
[1] Beletskii V. V., Notes on the Motion of Celestial Bodies, Nauka, Moscow, 1972, 360 pp. | MR
[2] Conti R., Problemi di Controllo e di Controllo Ottimale, UTET, Torino, 1974, 239 pp. (in Italian)
[3] Filippov A. F., Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, 1988, 304 pp. | MR | Zbl
[4] Gusev M. I., Zykov I. V., “On the geometry of the reachable sets of control systems with isoperimetric constraints”, Tr. Inst. Mat. Mekh. UrO RAN, 24:1 (2018), 63–75 | DOI | MR
[5] Guseinov K. G., Ozer O., Akyar E., Ushakov V. N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlin. Dif. Equat. Appl. (NoDEA), 14:1-2 (2007), 57–73 | DOI | MR | Zbl
[6] Guseinov Kh. G., Nazlipinar A. S., “On the continuity properties of the attainable sets of nonlinear control systems with integral constraint on controls”, Abstr. Appl. Anal., 2008, 295817, 14 pp. | DOI | MR | Zbl
[7] Huseyin N., Huseyin A., Guseinov Kh. G., “Approximations of the set of trajectories and integral funnel of the non-linear control systems with $L_p$ norm constraints on the control functions”, IMA J. Math. Control Inform, 39:4 (2022), 1213–1231 | DOI | MR | Zbl
[8] Huseyin A., Huseyin N., Guseinov Kh. G., “Approximations of the images and integral funnels of the $L_p$ balls under a Urysohn-type integral operator”, Funktsionalnyi Analiz i ego Prilozheniya, 56:4 (2022), 43–58 | DOI | MR
[9] Ibragimov G., Ferrara M., Kuchkarov A., Pansera B. A., “Simple motion evasion differential game of many pursuers and evaders with integral constraints”, Dynamic Games Appl., 8:2 (2018), 352–378 | DOI | MR | Zbl
[10] Kolmogorov A. N., Fomin S. V., Introductory Real Analysis, Dover Publications Inc., New York, 1975, 403 pp. | MR
[11] Kostousova E. K., “On the polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints”, Tr. Inst. Mat. Mekh. UrO RAN,, 26:1 (2020), 141–155 (in Russian) | DOI | MR
[12] Krasovskii N. N., Theory of Control of Motion: Linear Systems, Nauka, Moscow, 1968, 475 pp. (in Russian) | MR | Zbl
[13] Motta M., Sartori C., “Minimum time with bounded energy, minimum energy with bounded time”, SIAM J. Contr. Optimiz., 42:3 (2003), 789–809 | DOI | MR | Zbl
[14] Rousse R., Garoche P.-L., Henrion D., “Parabolic set simulation for reachability analysis of linear time-invariant systems with integral quadratic constraint”, European J. Contr., 58 (2021), 152–167 | DOI | MR | Zbl
[15] Subbotin A. I., Ushakov V. N., “Alternative for an encounter-evasion differential game with integral constraints on the players controls”, J. Appl. Math. Mech., 39:3 (1975), 387–396 | DOI | MR | Zbl
[16] Subbotina N. N., Subbotin A. I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players' controls”, J. Appl. Math. Mech., 39:3 (1975), 397–406 | DOI | MR | Zbl