@article{UMJ_2023_9_1_a5,
author = {Hamza El Bazi and Abdellatif Sadrati},
title = {Weighted $S^p$-pseudo $S$-asymptotically periodic solutions for some systems of nonlinear delay integral equations with superlinear perturbation},
journal = {Ural mathematical journal},
pages = {78--92},
year = {2023},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a5/}
}
TY - JOUR AU - Hamza El Bazi AU - Abdellatif Sadrati TI - Weighted $S^p$-pseudo $S$-asymptotically periodic solutions for some systems of nonlinear delay integral equations with superlinear perturbation JO - Ural mathematical journal PY - 2023 SP - 78 EP - 92 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a5/ LA - en ID - UMJ_2023_9_1_a5 ER -
%0 Journal Article %A Hamza El Bazi %A Abdellatif Sadrati %T Weighted $S^p$-pseudo $S$-asymptotically periodic solutions for some systems of nonlinear delay integral equations with superlinear perturbation %J Ural mathematical journal %D 2023 %P 78-92 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a5/ %G en %F UMJ_2023_9_1_a5
Hamza El Bazi; Abdellatif Sadrati. Weighted $S^p$-pseudo $S$-asymptotically periodic solutions for some systems of nonlinear delay integral equations with superlinear perturbation. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 78-92. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a5/
[1] Blot J., Cieutat P., N'Guérékata G. M., “$S$-asymptotically $\omega$-periodic functions and applications to evolution equations”, Afr. Diaspora J. Math., 12:2 (2011), 113–121 | MR | Zbl
[2] Blot J., Mophou G. M., N'Guérékata G. M., Pennequin D., “Weighted pseudo almost automorphic functions and applications to abstract differential equations”, Nonlinear Anal., 71 (2009), 903–909 | DOI | MR | Zbl
[3] Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, 1st, NY, 2010, 600 pp. | DOI | MR
[4] Cooke K. L., Kaplan J. L., “A periodicity threshold theorem for epidemics and population growth”, Math. Biosci., 31:1–2 (1976), 87–104 | DOI | MR | Zbl
[5] Cuevas C., de Souza J. C., “$S$-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations”, Appl. Math. Lett., 22:6 (2009), 865–870 | DOI | MR | Zbl
[6] Diagana T., Mophou G. M., N'Guérékata G. M., “Existence of weighted pseudo-almost periodic solutions to some classes of differential equations with $S^{p}$-weighted pseudo-almost periodic coefficients”, Nonlinear Anal., 72:1 (2010), 430–438 | DOI | MR | Zbl
[7] Dimbour W., Mado J.-C., “$S$-asymptotically $\omega$-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space”, CUBO. Math. J., 16:3 (2014), 55–65 URL: https://hal.science/hal-02067049 | MR | Zbl
[8] Dimbour W., Manou-Abi S. M., “Asymptotically $\omega$-periodic functions in the Stepanov sense and its application for an advanced differential equation with piecewise constant argument in a Banach space”, Mediterr. J. Math., 15 (2018), 25 | DOI | MR | Zbl
[9] He B., Wang Q.-R., Cao J.-F., “Weighted $S^{p}$-pseudo $S$-asymptotic periodicity and applications to Volterra integral equations”, Appl. Math. Comput., 380 (2020), 125–275 | DOI | MR
[10] Henríquez H. R., Pierri M., Táboas P., “On $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications”, J. Math. Anal. Appl., 343 (2008), 1119–1130 | DOI | MR | Zbl
[11] Lee H. M., Jang H. H., Yun C. M., “$S$-asymptotically $\omega$-periodic mild solutions for the systems of differential equations with piecewise constant argument in Banach spaces”, J. Chungcheong Math. Soc., 31:1 (2018), 13–27 | DOI | MR | Zbl
[12] N'Guérékata G. M., Pankov A., “Stepanov-like almost automorphic functions and monotone evolution equations”, Nonlinear Anal., 68:9 (2008), 2658–2667 | DOI | MR | Zbl
[13] Sadrati A., Zertiti A., “A study of systems of nonlinear delay integral equations by using the method of upper and lower solutions”, Int. J. Math. Comput., 17:4 (2012), 93–102 | MR
[14] Sadrati A., Zertiti A., “A topological methods for Existence and multiplicity of positive solutions for some systems of nonlinear delay integral equations”, Int. J. Math. Stat., 13:1 (2013), 47–55 | MR | Zbl
[15] Sadrati A., Zertiti A., “Existence and uniqueness of positive almost periodic solution for systems of nonlinear delay integral equations”, Electron. J. Diff. Equ., 2015:116 (2015), 1–12 | MR
[16] Sadrati A., Zertiti A., “The Existence and uniqueness of positive weighted pseudo almost automorphic solution for some systems of neutral nonlinear delay integral equations”, Int. J. Appl. Math., 29:3 (2016), 331–347 | DOI | MR | Zbl
[17] Xia Z. N., “Weighted pseudo asymptotically periodic mild solutions of evolution equations”, Acta. Math. Sin.-English Ser., 31:8 (2015), 1215–1232 | DOI | MR | Zbl
[18] Zhao J.-Y., Ding H.-S., N'Guérékata G. M., “$S$-asymptotically periodic solutions for an epidemic model with superlinear perturbation”, Adv. Differ. Equ., 2016 (2016), 221 | DOI | MR