Ternary $\ast$-bands are globally determined
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A non-empty set $S$ together with the ternary operation denoted by juxtaposition is said to be ternary semigroup if it satisfies the associativity property $ab(cde)=a(bcd)e=(abc)de$ for all $a,b,c,d,e\in S$. The global set of a ternary semigroup $S$ is the set of all non empty subsets of $S$ and it is denoted by $P(S)$. If $S$ is a ternary semigroup then $P(S)$ is also a ternary semigroup with a naturally defined ternary multiplication. A natural question arises: "Do all properties of $S$ remain the same in $P(S)$?" The global determinism problem is a part of this question. A class $K$ of ternary semigroups is said to be globally determined if for any two ternary semigroups $S_1$ and $S_2$ of $K$, $P(S_1)\cong P(S_2)$ implies that $S_1\cong S_2$. So it is interesting to find the class of ternary semigroups which are globally determined. Here we will study the global determinism of ternary $\ast$-band.
Keywords: rectangular ternary band, involution ternary semigroup, involution ternary band, ternary $\ast$-band, ternary projection.
@article{UMJ_2023_9_1_a4,
     author = {Indrani Dutta and Sukhendu Kar},
     title = {Ternary $\ast$-bands are globally determined},
     journal = {Ural mathematical journal},
     pages = {64--77},
     year = {2023},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a4/}
}
TY  - JOUR
AU  - Indrani Dutta
AU  - Sukhendu Kar
TI  - Ternary $\ast$-bands are globally determined
JO  - Ural mathematical journal
PY  - 2023
SP  - 64
EP  - 77
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a4/
LA  - en
ID  - UMJ_2023_9_1_a4
ER  - 
%0 Journal Article
%A Indrani Dutta
%A Sukhendu Kar
%T Ternary $\ast$-bands are globally determined
%J Ural mathematical journal
%D 2023
%P 64-77
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a4/
%G en
%F UMJ_2023_9_1_a4
Indrani Dutta; Sukhendu Kar. Ternary $\ast$-bands are globally determined. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a4/

[1] Gan A., Zhao X., “Global determinism of Clifford semigroups”, J. Aust. Math. Soc., 97:1 (2014), 63–77 | DOI | MR | Zbl

[2] Gan A., Zhao X., Shao Y., “Globals of idempotent semigroups”, Commun. Algebra, 44:9 (2016), 3743–3766 | DOI | MR | Zbl

[3] Gan A., Zhao X., Ren M., “Global determinism of semigroups having regular globals”, Period. Math. Hung., 72 (2016), 12–22 | DOI | MR | Zbl

[4] Gould M., Iskra J. A., “Globally determined classes of semigroups”, Semigroup Forum, 28 (1984), 1–11 | DOI | MR | Zbl

[5] Gould M., Iskra J. A., Tsinakis C., “Globals of completely regular periodic semigroups”, Semigroup Forum, 29 (1984), 365–374 | MR | Zbl

[6] Gould M., Iskra J. A., Tsinakis C., “Globally determined lattices and semilattices”, Algebra Universalis, 19 (1984), 137–141 | DOI | MR | Zbl

[7] Kar S., Dutta I., “Globally determined ternary semigroups”, Asian-Eur. J. Math., 10:3 (2017), 1750038., 13 pp. | DOI | MR | Zbl

[8] Kar S., Dutta I., “Global determinism of ternary semilattices”, Asian-Eur. J. Math., 13:4 (2020), 2050083, 9 pp. | DOI | MR | Zbl

[9] Kobayashi Y., “Semilattices are globally determined”, Semigroup Forum, 29 (1984), 217–222 | DOI | MR | Zbl

[10] Tamura T., “Power semigroups of rectangular groups”, Math. Japon., 29 (1984), 671–678 | MR | Zbl

[11] Tamura T., Shafer J., “Power semigroups”, Math. Japon., 12 (1967), 25–32 | MR | Zbl

[12] Yu B., Zhao X., Gan A., “Global determinism of idempotent semigroups”, Communm Algebra, 46 (2018), 241–253 | DOI | MR | Zbl

[13] Vinčić M., “Global determinism of *-bands”, IMC Filomat 2001 (Niš, August 26–30, 2001), 2001, 91–97 | MR | Zbl