Statistical convergence in a bicomplex valued metric space
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 49-63

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study some basic properties of bicomplex numbers. We introduce two different types of partial order relations on bicomplex numbers, discuss bicomplex valued metric spaces with respect to two different partial orders, and compare them. We also define a hyperbolic valued metric space, the density of natural numbers, the statistical convergence, and the statistical Cauchy property of a sequence of bicomplex numbers and investigate some properties in a bicomplex metric space and prove that a bicomplex metric space is complete if and only if two complex metric spaces are complete.
Keywords: partial order, bicomplex valued metric space, statistical convergence.
@article{UMJ_2023_9_1_a3,
     author = {Subhajit Bera and Binod Chandra Tripathy},
     title = {Statistical convergence in a bicomplex valued metric space},
     journal = {Ural mathematical journal},
     pages = {49--63},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a3/}
}
TY  - JOUR
AU  - Subhajit Bera
AU  - Binod Chandra Tripathy
TI  - Statistical convergence in a bicomplex valued metric space
JO  - Ural mathematical journal
PY  - 2023
SP  - 49
EP  - 63
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a3/
LA  - en
ID  - UMJ_2023_9_1_a3
ER  - 
%0 Journal Article
%A Subhajit Bera
%A Binod Chandra Tripathy
%T Statistical convergence in a bicomplex valued metric space
%J Ural mathematical journal
%D 2023
%P 49-63
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a3/
%G en
%F UMJ_2023_9_1_a3
Subhajit Bera; Binod Chandra Tripathy. Statistical convergence in a bicomplex valued metric space. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 49-63. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a3/