Mots-clés : integer partition, bipartite graph
@article{UMJ_2023_9_1_a2,
author = {Vitaly A. Baransky and Tatiana A. Senchonok},
title = {Around the {Erd\"Os{\textendash}Gallai} criterion},
journal = {Ural mathematical journal},
pages = {29--48},
year = {2023},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a2/}
}
Vitaly A. Baransky; Tatiana A. Senchonok. Around the ErdÖs–Gallai criterion. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 29-48. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a2/
[1] Andrews G. E., The Theory of Partitions, Cambridge University Press, Cambridge, 1984, 255 pp. | DOI | MR | Zbl
[2] Baransky V. A., Koroleva T. A., “The lattice of partitions of a positive integer”, Doklady Math., 77:1 (2008), 72–75 | DOI | MR | Zbl
[3] Baransky V. A., Koroleva T. A., Senchonok T. A., “On the partition lattice of an integer”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 30—36 (in Russian) | MR
[4] Baransky V. A., Nadymova T. I., Senchonok T. A., “A new algorithm generating graphical sequences”, Sib. Electron. Mat. Izv., 13 (2016), 269–279 (in Russian) | DOI | MR | Zbl
[5] Baransky V. A., Koroleva T. A., Senchonok T. A., “On the partition lattice of all integers”, Sib. Electron. Mat. Izv., 13 (2016), 744–753 (in Russian) | DOI | MR | Zbl
[6] Baransky V. A., Senchonok T. A., “On maximal graphical partitions”, Sib. Electron. Mat. Izv., 14 (2017), 112–124 (in Russian) | DOI | MR | Zbl
[7] Baransky V. A., Senchonok T. A., “On threshold graphs and realizations of graphical partitions”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 22–31 (in Russian) | MR
[8] Baransky V. A., Senchonok T. A., “On the shortest sequences of elementary transformations in the partition lattice”, Sib. Electron. Mat. Izv., 15 (2018), 844–852 (in Russian) | DOI | MR | Zbl
[9] Baransky V. A., Senchonok T. A., “On maximal graphical partitions that are the nearest to a given graphical partition”, Sib. Electron. Mat. Izv., 17 (2020), 338–363 (in Russian) | DOI | MR | Zbl
[10] Baransky V. A., Senchonok T. A., “Bipartite threshold graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 56–67 (in Russian) | DOI | MR
[11] Baransky V. A., Senchonok T. A., “An algorithm for taking a bipartite graph to the bipartite threshold form”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 54–63 (in Russian) | DOI | MR
[12] Baransky V. A., Senchonok T. A., “Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 24–35 (in Russian) | DOI | MR
[13] Brylawski T., “The lattice of integer partitions”, Discrete Math., 6:3 (1973), 201–219 | DOI | MR | Zbl
[14] Erdös P., Gallai T., “Graphs with given degree of vertices”, Mat. Lapok, 11 (1960), 264—274 (in Hungarian)
[15] Kohnert A., “Dominance order and graphical partitions”, Elec. J. Comb., 11:1 (2004), N4, 1–17 | DOI | MR | Zbl
[16] Mahadev N. V. R., Peled U. N., Threshold Graphs and Related Topics, v. 56, Annals of Discr. Math., North-Holland Publishing Co., Amsterdam, 1995, 542 pp. | MR
[17] Sierksma G., Hoogeven H., “Seven criteria for integer sequences being graphic”, J. Graph Theory, 15:2 (1991), 223–231 | DOI | MR | Zbl