On one Zalcman problem for the mean value operator
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 187-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal{D}'(\mathbb{R}^n)$ and $\mathcal{E}'(\mathbb{R}^n)$ be the spaces of distributions and compactly supported distributions on $\mathbb{R}^n$, $n\geq 2$, respectively, let $\mathcal{E}'_{\natural}(\mathbb{R}^n)$ be the space of all radial (invariant under rotations of the space $\mathbb{R}^n$) distributions in $\mathcal{E}'(\mathbb{R}^n)$, let $\widetilde{T}$ be the spherical transform (Fourier–Bessel transform) of a distribution $T\in\mathcal{E}'_{\natural}(\mathbb{R}^n)$, and let $\mathcal{Z}_{+}(\widetilde{T})$ be the set of all zeros of an even entire function $\widetilde{T}$ lying in the half-plane $\mathrm{Re} \, z\geq 0$ and not belonging to the negative part of the imaginary axis. Let $\sigma_{r}$ be the surface delta function concentrated on the sphere $S_r=\{x\in\mathbb{R}^n: |x|=r\}$. The problem of L. Zalcman on reconstructing a distribution $f\in \mathcal{D}'(\mathbb{R}^n)$ from known convolutions $f\ast \sigma_{r_1}$ and $f\ast \sigma_{r_2}$ is studied. This problem is correctly posed only under the condition $r_1/r_2\notin M_n$, where $M_n$ is the set of all possible ratios of positive zeros of the Bessel function $J_{n/2-1}$. The paper shows that if $r_1/r_2\notin M_n$, then an arbitrary distribution $f\in \mathcal{D}'(\mathbb{R}^n)$ can be expanded into an unconditionally convergent series $$ f=\sum\limits_{\lambda\in\mathcal{Z}_{+}( \widetilde{\Omega}_{r_1})}\,\,\, \sum\limits_{\mu\in\mathcal{Z}_+(\widetilde{\Omega}_{r_2})} \frac{4\lambda\mu}{(\lambda^2-\mu^2) \widetilde{\Omega}_{r_1}^{\,\,\,\displaystyle{'}}(\lambda)\widetilde{\Omega}_{r_2}^{\,\,\,\displaystyle{'}}(\mu)}\Big (P_{r_2} (\Delta) \big((f\ast\sigma_{r_2})\ast \Omega_{r_1}^{\lambda}\big) -P_{r_1} (\Delta) \big((f\ast\sigma_{r_1})\ast \Omega_{r_2}^{\mu}\big)\Big) $$ in the space $\mathcal{D}'(\mathbb{R}^n)$, where $\Delta$ is the Laplace operator in $\mathbb{R}^n$, $P_r$ is an explicitly given polynomial of degree $[(n+5)/4]$, and $\Omega_{r}$ and $\Omega_{r}^{\lambda}$ are explicitly constructed radial distributions supported in the ball $ |x|\leq r$. The proof uses the methods of harmonic analysis, as well as the theory of entire and special functions. By a similar technique, it is possible to obtain inversion formulas for other convolution operators with radial distributions.
Keywords: compactly supported distributions, two-radii theorem
Mots-clés : Fourier–Bessel transform, inversion formulas.
@article{UMJ_2023_9_1_a16,
     author = {Natalia P. Volchkova and Vitaliy V. Volchkov},
     title = {On one {Zalcman} problem for the mean value operator},
     journal = {Ural mathematical journal},
     pages = {187--200},
     year = {2023},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a16/}
}
TY  - JOUR
AU  - Natalia P. Volchkova
AU  - Vitaliy V. Volchkov
TI  - On one Zalcman problem for the mean value operator
JO  - Ural mathematical journal
PY  - 2023
SP  - 187
EP  - 200
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a16/
LA  - en
ID  - UMJ_2023_9_1_a16
ER  - 
%0 Journal Article
%A Natalia P. Volchkova
%A Vitaliy V. Volchkov
%T On one Zalcman problem for the mean value operator
%J Ural mathematical journal
%D 2023
%P 187-200
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a16/
%G en
%F UMJ_2023_9_1_a16
Natalia P. Volchkova; Vitaliy V. Volchkov. On one Zalcman problem for the mean value operator. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 187-200. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a16/

[1] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Analyse Math., 54:1 (1990), 259–287 | DOI | MR | Zbl

[2] Berenstein C. A., Struppa D. C., “Complex analysis and convolution equations”, Encyclopaedia Math. Sci., Several Complex Variables V., v. 54, ed. Khenkin G.M., Springer, Berlin, Heidelberg, 1993, 1–108 | DOI | MR

[3] Berenstein C. A., Taylor B. A., Yger A., “On some explicit deconvolution formulas”, J. Optics (Paris), 14:2 (1983), 75–82 | DOI

[4] Berenstein C. A., Yger A., “Le problème de la déconvolution”, J. Funct. Anal., 54:2 (1983), 113–160 (in French) | DOI | MR | Zbl

[5] Berkani M., El Harchaoui M., Gay R., “Inversion de la transformation de Pompéiu locale dans l{'}espace hyperbolique quaternique – Cas des deux boules”, J. Complex Var., Theory Appl., 43:1 (2000), 29–57 (in French) | DOI | MR | Zbl

[6] Delsarte J., “Note sur une propriété nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris Sér. A–B, 246 (1958), 1358–1360 (in French) URL: https://zbmath.org/0084.09403 | MR | Zbl

[7] Denmead Smith J., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Math. Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl

[8] El Harchaoui M., “Inversion de la transformation de Pompéiu locale dans les espaces hyperboliques réel et complexe (Cas de deux boules)”, J. Anal. Math., 67:1 (1995), 1–37 (in French) | DOI | MR | Zbl

[9] Helgason S., Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, New York, 1984, 667 pp. | MR | Zbl

[10] Helgason S., Geometric Analysis on Symmetric Spaces, Amer. Math. Soc. Providence, Rhode Island, 2008, 637 pp. | MR | Zbl

[11] Hielscher R., Quellmalz M., “Reconstructing a function on the sphere from its means along vertical slices”, Inverse Probl. Imaging, 10:3 (2016), 711–739 | DOI | MR | Zbl

[12] Higher Transcendental Functions,, v. II, ed. Erdélyi A., McGraw-Hill, New York, 1953, 302 pp. URL: https://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738 | MR

[13] Hörmander L., The Analysis of Linear Partial Differential Operators, v. I, Springer-Verlag, New York, 2003, 440 pp. | DOI | MR | Zbl

[14] Il'in V. A., Sadovnichij V. A., Sendov Bl. Kh., {Matematicheskij analiz} [Mathematical Analysis], v. II, Moscow, 2013, 357 pp. (in Russian)

[15] Levin B. Ya., {Raspredelenie kornej celykh funkcij} [Distribution of Roots of Entire Functions], URSS, Moscow, 2022, 632 pp. (in Russian)

[16] Nicolesco M., “Sur un théorème de M. Pompeiu”, Bull Sci. Acad. Royale Belgique $(5)$, 16 (1930), 817—822 (in French)

[17] Pompéiu D., “Sur certains systèmes d'équations linéaires et sur une propriété intégrale de fonctions de plusieurs variables”, C. R. Acad. Sci. Paris, 188 (1929), 1138–1139 (in French)

[18] Pompéiu D., “Sur une propriété intégrale de fonctions de deux variables réeles”, Bull. Sci. Acad. Royale Belgique $(5)$, 15 (1929), 265—269 (in French)

[19] Radon J., “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl., 69 (1917), 262–277 (in German)

[20] Rubin B., “Reconstruction of functions on the sphere from their integrals over hyperplane sections”, Anal. Math. Phys., 9:4 (2019), 1627–1664 | DOI | MR | Zbl

[21] Salman Y., “Recovering functions defined on the unit sphere by integration on a special family of sub-spheres”, Anal. Math. Phys., 7:2 (2017), 165—185 | DOI | MR | Zbl

[22] Vladimirov V. S., Zharinov V. V., {Uravneniya Matematicheskoy Fiziki} [Equations of Mathematical Physics], FIZMATLIT, Moscow, 2008, 400 pp. (in Russian)

[23] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003, 454 pp. | DOI | MR | Zbl

[24] Volchkov V. V., Volchkov Vit. V., “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | MR | Zbl

[25] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009, 671 pp. | DOI | MR | Zbl

[26] Volchkov V. V., Volchkov Vit. V., “Inversion of the local Pompeiu transformation on Riemannian symmetric spaces of rank one”, J. Math. Sci., 179:2 (2011), 328–343 | DOI | MR | Zbl

[27] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | DOI | MR | Zbl

[28] Volchkov V. V., Volchkov Vit. V., “Spherical means on two-point homogeneous spaces and applications”, Ivz. Math., 77:2 (2013), 223–252 | DOI | MR | Zbl

[29] Volchkov Vit. V., “On functions with given spherical means on symmetric spaces”, J. Math. Sci., 175:4 (2011), 402–412 | DOI | MR | Zbl

[30] Volchkov Vit. V., Volchkova N. P., “Inversion of the local Pompeiu transform on the quaternion hyperbolic space”, Dokl. Math., 64:1 (2001), 90–93 | MR | Zbl

[31] Volchkov Vit. V., Volchkova N. P., “Inversion theorems for the local Pompeiu transformation in the quaternion hyperbolic space”, St. Petersburg Math. J., 15:5 (2004), 753–771 | DOI | MR | Zbl

[32] Volchkova N. P., Volchkov Vit. V., “Deconvolution problem for indicators of segments”, Math. Notes NEFU, 26:3 (2019), 3–14 | DOI | MR

[33] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47:3 (1972), 237–254 | DOI | MR | Zbl

[34] Zalcman L., “Offbeat integral geometry”, Amer. Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl

[35] Zalcman L., “A bibliographic survey of the Pompeiu problem”, NATO ASI Seies, Approximation by Solutions of Partial Differential Equations, v. 365, eds. Fuglede B. et al., Springer, Dordrecht, 1992, 185–194 | DOI | MR

[36] Zalcman L., “Supplementary bibliography to: “A bibliographic survey of the Pompeiu problem””, Contemp. Math., Radon Transforms and Tomography, v. 278, eds. E.T. Quinto et al., Amer. Math. Soc., 2001, 69–74 | DOI | MR | Zbl