Mots-clés : transcendental equations
@article{UMJ_2023_9_1_a15,
author = {Srinivasarao Thota and Tekle Gemechu and Abayomi Ayotunde Ayoade},
title = {On new hybrid root-finding algorithms for solving transcendental equations using exponential and {Halley's} methods},
journal = {Ural mathematical journal},
pages = {176--186},
year = {2023},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a15/}
}
TY - JOUR AU - Srinivasarao Thota AU - Tekle Gemechu AU - Abayomi Ayotunde Ayoade TI - On new hybrid root-finding algorithms for solving transcendental equations using exponential and Halley's methods JO - Ural mathematical journal PY - 2023 SP - 176 EP - 186 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a15/ LA - en ID - UMJ_2023_9_1_a15 ER -
%0 Journal Article %A Srinivasarao Thota %A Tekle Gemechu %A Abayomi Ayotunde Ayoade %T On new hybrid root-finding algorithms for solving transcendental equations using exponential and Halley's methods %J Ural mathematical journal %D 2023 %P 176-186 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a15/ %G en %F UMJ_2023_9_1_a15
Srinivasarao Thota; Tekle Gemechu; Abayomi Ayotunde Ayoade. On new hybrid root-finding algorithms for solving transcendental equations using exponential and Halley's methods. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 176-186. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a15/
[1] Badr E., Attiya H., El Ghamry A., “Novel hybrid algorithms for root determining using advantages of open methods and bracketing methods”, Alexandria Eng. J., 61:12 (2022), 11579–11588 | DOI | MR
[2] Badr E., Almotairi S., El Ghamry A., “A Comparative study among new hybrid root finding algorithms and traditional methods”, Mathematics, 9:11 (2021), 1306 | DOI
[3] Badr E. M., ElGendy H. S., “A hybrid water cycle-particle swarm optimization for solving the fuzzy underground water confined steady flow”, Indones. J. Electr. Eng. Comput. Sci., 19:1 (2020), 492–504 | DOI
[4] Baskar S., Ganesh S. S., Introduction to Numerical Analysis, Powai, Mumbai, India, 2016, 230 pp.
[5] Brent R. P., Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973, 195 pp. | MR | Zbl
[6] Burden R. L., J. Douglas Faires, Numerical Analysis, 3rd, PWS Publishing, Baston, USA, 1985, 676 pp.
[7] Chapra S. C., Canale R. P., Numerical Methods for Engineers, 7th, McGraw-Hill, Boston, MA, USA, 2015, 970 pp.
[8] Dekker T. J., “Finding a zero by means of successive linear interpolation”, Constructive Aspects of the Fundamental Theorem of Algebra, eds. B. Dejon, P. Henrici, Wiley-Interscience, London, 1969, 37–48 | MR
[9] Fink K. D., Mathews J. H., Numerical Methods Using Matlab, 4th, Prentice-Hall Inc., Upper Saddle River, NJ, USA, 2004, 696 pp.
[10] Gemechu T., Thota S., “On new root finding algorithms for solving nonlinear transcendental equations”, Int. J. Chem., Math. Phys., 4:2 (2020), 18–24 | DOI
[11] Hasan A., “Numerical study of some iterative methods for solving nonlinear equations”, Int. J. Eng. Sci. Invent., 5:2 (2016), 1–10 | MR | Zbl
[12] Hoffman J. D., Numerical Methods for Engineers and Scientists, 2nd, Marcel Dekker Inc., NY, Basel, 2001, 823 pp. | Zbl
[13] Kiusalaas J., Numerical Methods in Engineering with Python, 2nd, Cambridge University Press, Cambridge, 2010, 432 pp. | MR | Zbl
[14] Novak E., Ritter K., Woźniakowski H., “Average-case optimality of a hybrid secant-bisection method”, Math. Comput., 64:212 (1995), 1517–1539 | DOI | MR | Zbl
[15] Parveen T., Singh S., Thota S., Srivastav V. K., “A new hybrid root-finding algorithm for transcendental equations using bisection, regula-falsi and Newton-Raphson methods”, National Conf. Sustainable Recent Innovation in Science and Engineering (SUNRISE-19), 2019
[16] Ridders C., “A new algorithm for computing a single root of a real continuous function”, IEEE Trans. Circuits Syst., 26:11 (1979), 979–980 | DOI | Zbl
[17] Sabharwal C. L., “Blended root finding algorithm outperforms bisection and regula falsi algorithms”, Mathematics, 7:11 (2019), 1118 | DOI
[18] Srivastav V. K., Thota S., Kumar M., “A new trigonometrical algorithm for computing real root of non-linear transcendental equations”, Int. J. Appl. Comput. Math., 5 (2019), 44 | DOI | MR | Zbl
[19] Thota S., Srivastav V. K., “An algorithm to compute real root of transcendental equations using hyperbolic tangent function”, Int. J. Open Problems Compt. Math., 14:2 (2021), 1–14 | MR
[20] Thota S., “A numerical algorithm to find a root of non-linear equations using householder's method”, Int. J. Adv. Appl. Sci., 10:2 (2021), 141–148 | DOI | MR
[21] Thota S., Gemechu T., Shanmugasundaram P., “New algorithms for computing a root of non-linear equations using exponential series”, Palestine J. Math., 10:1 (2021), 128–134 | MR | Zbl
[22] Thota S., Gemechu T., “A new algorithm for computing a root of transcendental equations using series expansion”, Southeast Asian J. Sci., 7:2 (2019), 106–114 | MR
[23] Thota S., “A new root-finding algorithm using exponential series”, Ural Math. J., 5:1 (2019), 83–90 | DOI | MR | Zbl
[24] Thota S., Srivastav V. K., “Quadratically convergent algorithm for computing real root of non-linear transcendental equations”, BMC Res. Notes, 11 (2018), 909 | DOI | MR
[25] Thota S., Srivastav V. K., “Interpolation based hybrid algorithm for computing real root of non-linear transcendental functions”, Int. J. Math. Comp. Res., 2:11 (2014.), 729–735
[26] Thota S., “A new hybrid halley-false position type root finding algorithm to solve transcendental equations”, Istanbul International Modern Scientific Research Congress-III (06–08 May 2022), Istanbul Gedik University, Istanbul, Turkey, 2022, 1–2