Mots-clés : non-Markovian queue
@article{UMJ_2023_9_1_a14,
author = {B. Somasudaram and S. Karpagam and R. Lokesh and A. Kavin Sagana Mary},
title = {An $M^{[X]}/G/1$ queue with optional service and working breakdown},
journal = {Ural mathematical journal},
pages = {162--175},
year = {2023},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a14/}
}
TY - JOUR
AU - B. Somasudaram
AU - S. Karpagam
AU - R. Lokesh
AU - A. Kavin Sagana Mary
TI - An $M^{[X]}/G/1$ queue with optional service and working breakdown
JO - Ural mathematical journal
PY - 2023
SP - 162
EP - 175
VL - 9
IS - 1
UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a14/
LA - en
ID - UMJ_2023_9_1_a14
ER -
B. Somasudaram; S. Karpagam; R. Lokesh; A. Kavin Sagana Mary. An $M^{[X]}/G/1$ queue with optional service and working breakdown. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 162-175. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a14/
[1] Ayyappan G., Thamizhselvi P., Somasundaram B., Udayageetha J., “Analysis of an $M^{X_1},$ $M^{X_2}/G_1,$ $G_2/1$ retrial queueing system with priority services, working breakdown, Bernoulli vacation, admission control and balking”, J. Stat. Manag. Syst., 24:4 (2020), 685–702 | DOI | MR
[2] Al-Jararha J., Madan K. C., “An $M/G/1$ queue with second optional service with general service time distribution”, Internat. J. Inform. Management Sci., 14:2 (2003), 47–56 | MR | Zbl
[3] Ammar S. I., Rajadurai P., “Performance analysis of preemptive priority retrial queueing system with disaster under working breakdown services”, Symmetry, 11:3 (2019), 419–425 | DOI
[4] Choudhury G., Paul M., “A batch arrival queue with a second optional service channel under $N$-policy”, Stoch. Anal. Appl., 24:1 (2006), 1–21 | DOI | MR | Zbl
[5] Choudhury G., Tadj L., “An $M/G/1$ queue with two phases of service subject to the server breakdown and delayed repair”, Appl. Math. Model., 33:6 (2009), 2699–2709 | DOI | MR | Zbl
[6] Gupta D., Solanki A., Agrawal K. M., “Non-Markovian queueing system, $M^X/G/1$ with server breakdown and repair times”, Recent Res. Sci. Technol., 3:7 (2011), 88–94 | MR
[7] Kalidass K., Kasturi R., “A two phase service $M/G/1$ queue with a finite number of immediate Bernoulli feedbacks”, OPSEARCH, 51:2 (2014), 201–218 | DOI | MR | Zbl
[8] Kim B. K., Lee D. H., “The $M/G/1$ queue with disasters and working breakdowns”, Appl. Math. Model., 38:5–6 (2014), 1788–1798 | DOI | MR | Zbl
[9] Madan K. C., “An $M/G/1$ queue with second optional service”, Queueing System, 34 (2000), 37–46 | DOI | MR | Zbl
[10] Maragathasundari S., Srinivasan S., Ranjitham A., “Batch arrival queueing system with two stages of service”, Int. J. Math. Anal., 8:6 (2014), 247–258 | DOI | MR
[11] Maragathasundari S., Srinivasan S., “A non-Markovian multistage batch arrival queue with breakdown and reneging”, Math. Probl. Eng., 2014 (2014), 519579, 16 pp. | DOI | MR | Zbl
[12] Rajadurai P., “Sensitivity analysis of an $M/G/1$ retrial queueing system with disaster under working vacations and working breakdowns”, RAIRO-Oper. Res., 52:1 (2018), 35–54 | DOI | MR | Zbl
[13] Rajadurai P., Saravanarajan M. C., Chandrasekaran V. M., “A study on $M/G/1$ feedback retrial queue with subject to server breakdown and repair under multiple working vacation policy”, Alexandria Eng. J., 57:6 (2017), 947–962 | DOI | MR
[14] Santhi K., “An $M/G/1$ retrial queue with second optional service and multiple working vacation”, Adv. Appl. Math. Sci., 20:6 (2021), 1129–1146 | MR
[15] Singh C. J., Kaur S., “$M^{X}/G/1$ queue with optional service and server breakdowns.”, Performance Prediction and Analytics of Fuzzy, Reliability and Queueing Models. Asset Analytics, eds. K. Deep, M. Jain, S. Salhi, Springer, Singapore, 2019, 177–189 | DOI
[16] Thangaraj V., Vanitha S., “$M/G/1$ queue with two-stage heterogeneous service compulsory server vacation and random breakdowns”, Int. J. Contemp. Math. Sci., 5:7 (2010), 307–322 | MR | Zbl
[17] Yang D.-Y., Chen Y.-H., “Computation and optimization of a working breakdown queue with second optional service”, J. Ind. Production Eng., 35:3 (2018), 181–188 | DOI
[18] Yang D.-Y., Chen Y.-H., Wu C.-H., “Modelling and optimisation of a two-server queue with multiple vacations and working breakdowns”, Int. J. Prod. Res., 58:10 (2020), 3036–3048 | DOI
[19] Yen T.-C., Wang K.-H., Chen J.-Y., “Optimization analysis of the $N$ policy $M/G/1$ queue with working breakdowns”, Symmetry, 12:4 (2020), 583–594 | DOI | MR