An $M^{[X]}/G/1$ queue with optional service and working breakdown
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 162-175

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study, a batch arrival single service queue with two stages of service (second stage is optional) and working breakdown is investigated. When the system is in operation, it may breakdown at any time. During breakdown period, instead of terminating the service totally, it continues at a slower rate. We find the time-dependent probability generating functions in terms of their Laplace transforms and derive explicitly the corresponding steady state results. Furthermore, numerous measures indicating system performances, such as the average queue size and the average queue waiting time, has been obtained. Some of the numerical results and graphical representations were also presented.
Keywords: second optional service, working breakdown.
Mots-clés : non-Markovian queue
@article{UMJ_2023_9_1_a14,
     author = {B. Somasudaram and S. Karpagam and R. Lokesh and A. Kavin Sagana Mary},
     title = {An $M^{[X]}/G/1$ queue with optional service and working breakdown},
     journal = {Ural mathematical journal},
     pages = {162--175},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a14/}
}
TY  - JOUR
AU  - B. Somasudaram
AU  - S. Karpagam
AU  - R. Lokesh
AU  - A. Kavin Sagana Mary
TI  - An $M^{[X]}/G/1$ queue with optional service and working breakdown
JO  - Ural mathematical journal
PY  - 2023
SP  - 162
EP  - 175
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a14/
LA  - en
ID  - UMJ_2023_9_1_a14
ER  - 
%0 Journal Article
%A B. Somasudaram
%A S. Karpagam
%A R. Lokesh
%A A. Kavin Sagana Mary
%T An $M^{[X]}/G/1$ queue with optional service and working breakdown
%J Ural mathematical journal
%D 2023
%P 162-175
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a14/
%G en
%F UMJ_2023_9_1_a14
B. Somasudaram; S. Karpagam; R. Lokesh; A. Kavin Sagana Mary. An $M^{[X]}/G/1$ queue with optional service and working breakdown. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 162-175. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a14/