Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 147-152
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equations with a generalized action on the right-hand side, for example, containing impulses — delta functions. The fact that the derivatives in the equation are considered distributions required a correction of the well-known Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure the property under study.
Keywords:
Hyers–Ulam–Rassias stability, differential equations, generalized actions, discontinuous trajectories.
@article{UMJ_2023_9_1_a12,
author = {Alexander N. Sesekin and Anna D. Kandrina},
title = {Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side},
journal = {Ural mathematical journal},
pages = {147--152},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/}
}
TY - JOUR AU - Alexander N. Sesekin AU - Anna D. Kandrina TI - Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side JO - Ural mathematical journal PY - 2023 SP - 147 EP - 152 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/ LA - en ID - UMJ_2023_9_1_a12 ER -
%0 Journal Article %A Alexander N. Sesekin %A Anna D. Kandrina %T Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side %J Ural mathematical journal %D 2023 %P 147-152 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/ %G en %F UMJ_2023_9_1_a12
Alexander N. Sesekin; Anna D. Kandrina. Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/