@article{UMJ_2023_9_1_a12,
author = {Alexander N. Sesekin and Anna D. Kandrina},
title = {Hyers{\textendash}Ulam{\textendash}Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side},
journal = {Ural mathematical journal},
pages = {147--152},
year = {2023},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/}
}
TY - JOUR AU - Alexander N. Sesekin AU - Anna D. Kandrina TI - Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side JO - Ural mathematical journal PY - 2023 SP - 147 EP - 152 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/ LA - en ID - UMJ_2023_9_1_a12 ER -
%0 Journal Article %A Alexander N. Sesekin %A Anna D. Kandrina %T Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side %J Ural mathematical journal %D 2023 %P 147-152 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/ %G en %F UMJ_2023_9_1_a12
Alexander N. Sesekin; Anna D. Kandrina. Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/
[1] Hyers D. H., “On the stability of the linear functional equation”, Proc. Natl. Acad. Sci. USA, 27:4 (1941), 222–224 | DOI | MR | Zbl
[2] Miller B. M., Rubinovich E. Y., “Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations”, Autom. Remote Control, 74:12 (2013), 1969–2006 | DOI | MR | Zbl
[3] “Pavlenko V., Sesekin A.”, Proc. 2022 16th Int. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference 2022), ed. V.N. Tkhai, IEEE Xplore, 2022, 1–4 | DOI | Zbl
[4] Popa D., “Hyers–Ulam–Rassias stability of a linear recurrence”, J. Math. Anal. Appl., 309:2 (2005), 591–597 | DOI | MR | Zbl
[5] Rassias Th. M., “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72:2 (1978), 297–300 | DOI | MR | Zbl
[6] Rus I. A., “Ulam stability of ordinary differential equations”, Stud. Univ. Babeş-Bolyai Math., 54:4 (2009), 125–133 | MR | Zbl
[7] Samoilenko A. M., Perestyuk N. A., Impulsive Differential Equations, v. 14, World Sci. Ser. Nonlinear Sci. Ser. A, River Edge, NJ, 1995, 472 pp. | DOI | MR | Zbl
[8] Sesekin A.N., “Dynamic systems with nonlinear impulse structure”, Proc. Steklov Inst. Math., 2000, no. Suppl. 2, S158–S172 | MR | Zbl
[9] Wang J. R., Fec̆kan M., Zhou Y., “Ulam's type stability of impulsive ordinary differential equations”, J. Math. Anal. Appl., 395:1 (2012), 258–264 | DOI | MR | Zbl
[10] Zada A., Riaz U., Khan F. U., “Hyers–Ulam stability of impulsive integral equations”, Boll. Unione. Mat. Ital., 12 (2019), 453–467 | DOI | MR | Zbl
[11] Zavalishchin S. T., Sesekin A. N., Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1997, 256 pp. | DOI | MR | Zbl