Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 147-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equations with a generalized action on the right-hand side, for example, containing impulses — delta functions. The fact that the derivatives in the equation are considered distributions required a correction of the well-known Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure the property under study.
Keywords: Hyers–Ulam–Rassias stability, differential equations, generalized actions, discontinuous trajectories.
@article{UMJ_2023_9_1_a12,
     author = {Alexander N. Sesekin and Anna D. Kandrina},
     title = {Hyers{\textendash}Ulam{\textendash}Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side},
     journal = {Ural mathematical journal},
     pages = {147--152},
     year = {2023},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/}
}
TY  - JOUR
AU  - Alexander N. Sesekin
AU  - Anna D. Kandrina
TI  - Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
JO  - Ural mathematical journal
PY  - 2023
SP  - 147
EP  - 152
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/
LA  - en
ID  - UMJ_2023_9_1_a12
ER  - 
%0 Journal Article
%A Alexander N. Sesekin
%A Anna D. Kandrina
%T Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
%J Ural mathematical journal
%D 2023
%P 147-152
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/
%G en
%F UMJ_2023_9_1_a12
Alexander N. Sesekin; Anna D. Kandrina. Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/

[1] Hyers D. H., “On the stability of the linear functional equation”, Proc. Natl. Acad. Sci. USA, 27:4 (1941), 222–224 | DOI | MR | Zbl

[2] Miller B. M., Rubinovich E. Y., “Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations”, Autom. Remote Control, 74:12 (2013), 1969–2006 | DOI | MR | Zbl

[3] “Pavlenko V., Sesekin A.”, Proc. 2022 16th Int. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference 2022), ed. V.N. Tkhai, IEEE Xplore, 2022, 1–4 | DOI | Zbl

[4] Popa D., “Hyers–Ulam–Rassias stability of a linear recurrence”, J. Math. Anal. Appl., 309:2 (2005), 591–597 | DOI | MR | Zbl

[5] Rassias Th. M., “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72:2 (1978), 297–300 | DOI | MR | Zbl

[6] Rus I. A., “Ulam stability of ordinary differential equations”, Stud. Univ. Babeş-Bolyai Math., 54:4 (2009), 125–133 | MR | Zbl

[7] Samoilenko A. M., Perestyuk N. A., Impulsive Differential Equations, v. 14, World Sci. Ser. Nonlinear Sci. Ser. A, River Edge, NJ, 1995, 472 pp. | DOI | MR | Zbl

[8] Sesekin A.N., “Dynamic systems with nonlinear impulse structure”, Proc. Steklov Inst. Math., 2000, no. Suppl. 2, S158–S172 | MR | Zbl

[9] Wang J. R., Fec̆kan M., Zhou Y., “Ulam's type stability of impulsive ordinary differential equations”, J. Math. Anal. Appl., 395:1 (2012), 258–264 | DOI | MR | Zbl

[10] Zada A., Riaz U., Khan F. U., “Hyers–Ulam stability of impulsive integral equations”, Boll. Unione. Mat. Ital., 12 (2019), 453–467 | DOI | MR | Zbl

[11] Zavalishchin S. T., Sesekin A. N., Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1997, 256 pp. | DOI | MR | Zbl