Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 147-152

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equations with a generalized action on the right-hand side, for example, containing impulses — delta functions. The fact that the derivatives in the equation are considered distributions required a correction of the well-known Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure the property under study.
Keywords: Hyers–Ulam–Rassias stability, differential equations, generalized actions, discontinuous trajectories.
@article{UMJ_2023_9_1_a12,
     author = {Alexander N. Sesekin and Anna D. Kandrina},
     title = {Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side},
     journal = {Ural mathematical journal},
     pages = {147--152},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/}
}
TY  - JOUR
AU  - Alexander N. Sesekin
AU  - Anna D. Kandrina
TI  - Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
JO  - Ural mathematical journal
PY  - 2023
SP  - 147
EP  - 152
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/
LA  - en
ID  - UMJ_2023_9_1_a12
ER  - 
%0 Journal Article
%A Alexander N. Sesekin
%A Anna D. Kandrina
%T Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
%J Ural mathematical journal
%D 2023
%P 147-152
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/
%G en
%F UMJ_2023_9_1_a12
Alexander N. Sesekin; Anna D. Kandrina. Hyers--Ulam--Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a12/