Lattice universality of locally finite $p$-groups
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 127-134
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary prime $p$, we prove that every algebraic lattice is isomorphic to a complete sublattice in the subgroup lattice of a suitable locally finite $p$-group. In particular, every lattice is embeddable in the subgroup lattice of a locally finite $p$-group.
Keywords:
subgroup lattice, algebraic lattice, complete sublattice, lattice-universal class of algebras, locally finite $p$-group
Mots-clés : group valuation.
Mots-clés : group valuation.
@article{UMJ_2023_9_1_a10,
author = {Vladimir B. Repnitskii},
title = {Lattice universality of locally finite $p$-groups},
journal = {Ural mathematical journal},
pages = {127--134},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a10/}
}
Vladimir B. Repnitskii. Lattice universality of locally finite $p$-groups. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a10/