Lattice universality of locally finite $p$-groups
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 127-134

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary prime $p$, we prove that every algebraic lattice is isomorphic to a complete sublattice in the subgroup lattice of a suitable locally finite $p$-group. In particular, every lattice is embeddable in the subgroup lattice of a locally finite $p$-group.
Keywords: subgroup lattice, algebraic lattice, complete sublattice, lattice-universal class of algebras, locally finite $p$-group
Mots-clés : group valuation.
@article{UMJ_2023_9_1_a10,
     author = {Vladimir B. Repnitskii},
     title = {Lattice universality of locally finite $p$-groups},
     journal = {Ural mathematical journal},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a10/}
}
TY  - JOUR
AU  - Vladimir B. Repnitskii
TI  - Lattice universality of locally finite $p$-groups
JO  - Ural mathematical journal
PY  - 2023
SP  - 127
EP  - 134
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a10/
LA  - en
ID  - UMJ_2023_9_1_a10
ER  - 
%0 Journal Article
%A Vladimir B. Repnitskii
%T Lattice universality of locally finite $p$-groups
%J Ural mathematical journal
%D 2023
%P 127-134
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a10/
%G en
%F UMJ_2023_9_1_a10
Vladimir B. Repnitskii. Lattice universality of locally finite $p$-groups. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a10/