Zagreb indices of a new sum of graphs
Ural mathematical journal, Tome 9 (2023) no. 1, pp. 4-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first and second Zagreb indices, since its inception have been subjected to extensive research in the physio-chemical analysis of compounds. In [5], Hanyuan Deng et al. computed the first and second Zagreb indices of four new operations on a graph defined by M. Eliasi, B. Taeri [6]. Motivated by [6], in this paper we define a new operation on graphs and compute the first and second Zagreb indices of the resultant graph. We illustrate the results with some examples.
Keywords: first Zagreb index $M_1(G)$, second Zagreb index $M_2(G)$, $F^*$ sum.
@article{UMJ_2023_9_1_a0,
     author = {Liju Alex and Indulal Gopalapillai},
     title = {Zagreb indices of a new sum of graphs},
     journal = {Ural mathematical journal},
     pages = {4--17},
     year = {2023},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a0/}
}
TY  - JOUR
AU  - Liju Alex
AU  - Indulal Gopalapillai
TI  - Zagreb indices of a new sum of graphs
JO  - Ural mathematical journal
PY  - 2023
SP  - 4
EP  - 17
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a0/
LA  - en
ID  - UMJ_2023_9_1_a0
ER  - 
%0 Journal Article
%A Liju Alex
%A Indulal Gopalapillai
%T Zagreb indices of a new sum of graphs
%J Ural mathematical journal
%D 2023
%P 4-17
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a0/
%G en
%F UMJ_2023_9_1_a0
Liju Alex; Indulal Gopalapillai. Zagreb indices of a new sum of graphs. Ural mathematical journal, Tome 9 (2023) no. 1, pp. 4-17. http://geodesic.mathdoc.fr/item/UMJ_2023_9_1_a0/

[1] Alex L., Indulal G., “Some degree based topological indices of a generalised $F$ sums of graphs”, Electron. J. Math. Anal. Appl., 9:1 (2021), 91–111 | MR | Zbl

[2] Alex L., Indulal G., “On the Wiener index of $F_H$ sums of graphs”, J. Comput. Sci. Appl. Math., 3:2 (2021), 37–57 | DOI | MR

[3] Balaban A. T., Motoc I., Bonchev D., Mekenyan O., “Topological indices for structure-activity correlations”, Topics Curr. Chem., Steric Effects in Drug Design, v. 114, Springer, Berlin, Heidelberg, 1983, 21–55 | DOI

[4] Cvetković D. M., Doob M., Sachs H., Spectra of Graphs: Theory and Application, Academic Press, New York, 1980, 368 pp. | MR

[5] Deng H., Sarala D., Ayyaswamy S. K., Balachandran S., “The Zagreb indices of four operations on graphs”, Appl. Math. Comput., 275 (2016), 422–431 | DOI | MR | Zbl

[6] Eliasi M., Taeri B., “Four new sums of graphs and their Wiener indices”, Discrete Appl. Math., 157:4 (2009), 794–803 | DOI | MR | Zbl

[7] Furtula B., Gutman I., “A forgotten topological index”, J. Math. Chem., 53 (2015), 1184–1190 | DOI | MR | Zbl

[8] Gutman I., “On the origin of two degree-based topological indices”, Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur., 146 (2014), 39–52 | MR | Zbl

[9] Gutman I., Das K. C., “The first Zagreb index 30 years after”, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92 | MR | Zbl

[10] Gutman I., Milovanović E., Milovanović I., “Beyond the Zagreb indices”, AKCE Int. J. Graphs and Combinatorics, 17:1 (2018), 74–85 | DOI | MR

[11] Gutman I., Trinajstić N., “Graph theory and molecular orbitals. Total $\varphi$-electron energy of alternant hydrocarbons”, Chem. Phys. Lett., 17:4 (1972), 535–538 | DOI

[12] Gutman I., Ruščić B., N. Trinajstić, Wilcox C.F., “Graph theory and molecular orbitals. XII. Acyclic polyenes”, J. Chem. Phys., 62:9 (1975), 3399–3405

[13] Gutman I., “An exceptional property of the first Zagreb index”, MATCH Commun. Math. Comput. Chem., 72 (2014), 733–740 | MR | Zbl

[14] Imran M., Akhter S., Iqbal Z., “Edge Mostar index of chemical structures and nanostructures using graph operations”, Int. J. Quantum Chem., 120:15 (2020), e26259 | DOI

[15] Indulal G., Alex L., Gutman I., “On graphs preserving PI index upon edge removal”, J. Math. Chem., 59 (2021), 1603–1609 | DOI | MR | Zbl

[16] Khalifeh M. H., Yousefi-Azari H., Ashrafi A. R., “The first and second Zagreb indices of some graph operations”, Discrete Appl. Math., 157 (2009), 804–811 | DOI | MR | Zbl

[17] Li X., Zhao H., “Trees with the first three smallest and largest generalized topological indices”, MATCH Commun. Math. Comput. Chem., 50 (2004), 57–62 | MR | Zbl

[18] Li X., Zheng J., “A unified approach to the extremal trees for different indices”, MATCH Commun. Math. Comput. Chem., 54 (2005), 195–208 | MR | Zbl

[19] Nikolić S., Kovačević G., Miličević A., Trinajstić N., “The Zagreb indices 30 years after”, Croat. Chem. Acta., 76:2 (2003), 113–124

[20] Stevanović D., Mathematical Properties of Zagreb Indices, Beograd, 2014 (in Serbian)

[21] Wiener H., “Structural determination of paraffin boiling points”, J. Am. Chem. Soc., 69 (1947), 17–20 | DOI