On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 127-132

Voir la notice de l'article provenant de la source Math-Net.Ru

For a distance-regular graph $\Gamma$ of diameter $3$, the graph $\Gamma_i$ can be strongly regular for $i=2$ or $3$. J. Kulen and co-authors found the parameters of a strongly regular graph $\Gamma_2$ given the intersection array of the graph $\Gamma$ (independently, the parameters were found by A.A. Makhnev and D.V. Paduchikh). In this case, $\Gamma$ has an eigenvalue $a_2-c_3$. In this paper, we study graphs $\Gamma$ with strongly regular graph $\Gamma_2$ and eigenvalue $\theta=1$. In particular, we prove that, for a $Q$-polynomial graph from a series of graphs with intersection arrays $\{2c_3+a_1+1,2c_3,c_3+a_1-c_2;1,c_2,c_3\}$, the equality $c_3=4 (t^2+t)/(4t+4-c_2^2)$ holds. Moreover, for $t\le 100000$, there is a unique feasible intersection array $\{9,6,3;1,2,3\}$ corresponding to the Hamming (or Doob) graph $H(3,4)$. In addition, we found parametrizations of intersection arrays of graphs with $\theta_2=1$ and $\theta_3=a_2-c_3$.
Keywords: strongly regular graph, distance-regular graph, intersection array.
@article{UMJ_2022_8_2_a9,
     author = {Alexander A. Makhnev and Ivan N. Belousov and Konstantin S. Efimov},
     title = {On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$},
     journal = {Ural mathematical journal},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a9/}
}
TY  - JOUR
AU  - Alexander A. Makhnev
AU  - Ivan N. Belousov
AU  - Konstantin S. Efimov
TI  - On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$
JO  - Ural mathematical journal
PY  - 2022
SP  - 127
EP  - 132
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a9/
LA  - en
ID  - UMJ_2022_8_2_a9
ER  - 
%0 Journal Article
%A Alexander A. Makhnev
%A Ivan N. Belousov
%A Konstantin S. Efimov
%T On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$
%J Ural mathematical journal
%D 2022
%P 127-132
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a9/
%G en
%F UMJ_2022_8_2_a9
Alexander A. Makhnev; Ivan N. Belousov; Konstantin S. Efimov. On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 127-132. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a9/