On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 127-132
Cet article a éte moissonné depuis la source Math-Net.Ru
For a distance-regular graph $\Gamma$ of diameter $3$, the graph $\Gamma_i$ can be strongly regular for $i=2$ or $3$. J. Kulen and co-authors found the parameters of a strongly regular graph $\Gamma_2$ given the intersection array of the graph $\Gamma$ (independently, the parameters were found by A.A. Makhnev and D.V. Paduchikh). In this case, $\Gamma$ has an eigenvalue $a_2-c_3$. In this paper, we study graphs $\Gamma$ with strongly regular graph $\Gamma_2$ and eigenvalue $\theta=1$. In particular, we prove that, for a $Q$-polynomial graph from a series of graphs with intersection arrays $\{2c_3+a_1+1,2c_3,c_3+a_1-c_2;1,c_2,c_3\}$, the equality $c_3=4 (t^2+t)/(4t+4-c_2^2)$ holds. Moreover, for $t\le 100000$, there is a unique feasible intersection array $\{9,6,3;1,2,3\}$ corresponding to the Hamming (or Doob) graph $H(3,4)$. In addition, we found parametrizations of intersection arrays of graphs with $\theta_2=1$ and $\theta_3=a_2-c_3$.
Keywords:
strongly regular graph, distance-regular graph, intersection array.
@article{UMJ_2022_8_2_a9,
author = {Alexander A. Makhnev and Ivan N. Belousov and Konstantin S. Efimov},
title = {On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$},
journal = {Ural mathematical journal},
pages = {127--132},
year = {2022},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a9/}
}
TY - JOUR AU - Alexander A. Makhnev AU - Ivan N. Belousov AU - Konstantin S. Efimov TI - On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$ JO - Ural mathematical journal PY - 2022 SP - 127 EP - 132 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a9/ LA - en ID - UMJ_2022_8_2_a9 ER -
Alexander A. Makhnev; Ivan N. Belousov; Konstantin S. Efimov. On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 127-132. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a9/
[1] Makhnev A. A, Nirova M. S., “Distance-regular Shilla graphs with $b_2=c_2$”, Math. Notes, 103:5 (2018), 780–792 | DOI
[2] Iqbal Q., Koolen J. H., Park J., Rehman M. U., “Distance-regular graphs with diameter $3$ and eigenvalue $a_2-c_3$”, Linear Algebra Appl., 587 (2020), 271–290 | DOI
[3] Makhnev A. A., Paduchikh D. V., “Inverse problems in the theory of distance-regular graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 133–144 | DOI
[4] Terwilliger P., “A new unequality for distance-regular graphs”, Discrete Math., 137:1–3 (1995), 319–332 | DOI