Combined algorithms for constructing a solution to the time-optimal problem in three-dimensional space based on the selection of extreme points of the scattering surface
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 115-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of time-optimal control problems in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve $\Gamma$ is chosen as the target set. We distinguish pseudo-vertices that are characteristic points on $\Gamma$ and responsible for the appearance of a singularity in the function of the optimal result. We reveal analytical relationships between pseudo-vertices and extreme points of a singular set belonging to the family of bisectors. The found analytical representation for the extreme points of the bisector is taken as the basis for numerical algorithms for constructing a singular set. The effectiveness of the developed approach for solving non-smooth dynamic problems is illustrated by an example of numerical-analytical construction of resolving structures for the time-optimal control problem.
Keywords: time-optimal problem, dispersing surface, bisector, extreme point, curvature, singular set, Frenet-Serret frame (TNB frame).
Mots-clés : pseudo-vertex
@article{UMJ_2022_8_2_a8,
     author = {Pavel D. Lebedev and Alexander A. Uspenskii},
     title = {Combined algorithms for constructing a solution to the time-optimal problem in three-dimensional space based on the selection of extreme points of the scattering surface},
     journal = {Ural mathematical journal},
     pages = {115--126},
     year = {2022},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a8/}
}
TY  - JOUR
AU  - Pavel D. Lebedev
AU  - Alexander A. Uspenskii
TI  - Combined algorithms for constructing a solution to the time-optimal problem in three-dimensional space based on the selection of extreme points of the scattering surface
JO  - Ural mathematical journal
PY  - 2022
SP  - 115
EP  - 126
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a8/
LA  - en
ID  - UMJ_2022_8_2_a8
ER  - 
%0 Journal Article
%A Pavel D. Lebedev
%A Alexander A. Uspenskii
%T Combined algorithms for constructing a solution to the time-optimal problem in three-dimensional space based on the selection of extreme points of the scattering surface
%J Ural mathematical journal
%D 2022
%P 115-126
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a8/
%G en
%F UMJ_2022_8_2_a8
Pavel D. Lebedev; Alexander A. Uspenskii. Combined algorithms for constructing a solution to the time-optimal problem in three-dimensional space based on the selection of extreme points of the scattering surface. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 115-126. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a8/

[1] Arnold V. I., Singularities of Caustics and Wave Fronts, Springer, Dordrecht, 1990, 259 pp. | DOI

[2] Dem'yanov V. F., Vasil'ev L. V., Nedifferenciruemaya optimizaciya [Non-Differentiable Optimization], Nauka, Moscow, 1981, 384 pp. (in Russian)

[3] Giblin P. J., “Symmetry sets and medial axes in two and three dimensions”, The Mathematics of Surfaces IX, eds. Cipolla R., Martin R., Springer, London, 2000, 306–321 | DOI

[4] Isaacs R., Differential games, John Wiley and Sons, N.Y., 1965, 384 pp.

[5] Kružkov S. N., “Generalized solutions of the Hamilton–Jacobi equations of Eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR Sb., 27:3 (1975), 406—446 (in Russian) | DOI

[6] Lebedev P. D., Uspenskii A. A., “Analytical and numerical construction of the optimal outcome function for a class of time-optimal problems”, Comput. Math. Model., 19:4 (2008), 375–386 | DOI

[7] Lebedev P. D., Uspenskii A. A., “Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 55 (2020), 93–112 (in Russian) | DOI

[8] Lebedev P. D., Uspenskii A. A., Program for constructing a solution to the tome-optimal problem in three-dimensional space with a spherical velocity vectogram and a nonconvex target set, Certificate of state registration of the computer program, no. 2022666810, September 07, 2022.

[9] Poznyak E. G., Shikin E. V, Differencial'naya geometriya: pervoe znakomstvo [Differential Geometry: the First Acquaintance], MSU, Moscow, 1990, 384 pp.

[10] Scherbakov R. N., Pichurin L. F., Differencialy pomogayut geometrii [Differentials Help Geometry], Prosveschenie,, Moscow, 1982, 192 pp. (in Russian)

[11] Sedykh V. D., “On Euler characteristics of manifolds of singularities of wave fronts”, Funct. Anal. Appl., 46:1 (2012), 77–80 | DOI

[12] Sedykh V. D., “Topology of singularities of a stable real caustic germ of type $E_6$”, Izv. Math, 82:3 (2018), 596–611 | DOI

[13] Siersma D., “Properties of conflict sets in the plan”, Banach Center Publ., 50 (1999), 267–276 | DOI

[14] Sotomayor J., Siersma D., Garcia R., “Curvatures of conflict surfaces in Euclidean 3-space”, Banach Center Publ., 50 (1999), 277–285 | DOI

[15] Subbotin A. I., Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, 1995, Birkhäuser, Boston, XII+314 pp. | DOI

[16] Ushakov V. N., Ershov A. A., Matviychuk A. R., “On Estimating the degree of nonconvexity of reachable sets of control systems”, Proc. Steklov Inst. Math., 315 (2021), 247–256 | DOI

[17] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Construction of a minimax solution for an Eikonal-type equation”, Proc. Steklov Inst. Math., 263:Suppl. 2 (2008), 191–201 | DOI

[18] Uspenskii A.A., “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proc. Steklov Inst. Math., 291:Suppl. 1 (2015), 239–254 | DOI

[19] Uspenskii A. A., Lebedev P. D., “Identification of the singularity of the generalized solution of the Dirichlet problem for an Eikonal type equation under the conditions of minimal smoothness of a boundary set”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018), 59—73 (in Russian) | DOI