@article{UMJ_2022_8_2_a6,
author = {Saeed Kosari and Seyed Mahmoud Sheikholeslami and Mustapha Chellali and Maryam Hajjari},
title = {Restrained {Roman} reinforcement number in graphs},
journal = {Ural mathematical journal},
pages = {81--93},
year = {2022},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a6/}
}
TY - JOUR AU - Saeed Kosari AU - Seyed Mahmoud Sheikholeslami AU - Mustapha Chellali AU - Maryam Hajjari TI - Restrained Roman reinforcement number in graphs JO - Ural mathematical journal PY - 2022 SP - 81 EP - 93 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a6/ LA - en ID - UMJ_2022_8_2_a6 ER -
Saeed Kosari; Seyed Mahmoud Sheikholeslami; Mustapha Chellali; Maryam Hajjari. Restrained Roman reinforcement number in graphs. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 81-93. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a6/
[1] Abdollahzadeh Ahangar H., Amjadi J., Chellali M., Nazari-Moghaddam S., Sheikholeslami S. M., “Total Roman reinforcement in graphs.”, Discuss. Math. Graph Theory, 39:4 (2019), 787–803 | DOI
[2] Abdollahzadeh Ahangar H., Mirmehdipour S. R., “Bounds on the restrained Roman domination number of a graph”, Commun. Comb. Optim., 1:1 (2016), 75–82 | DOI
[3] Amjadi J., Asgharsharghi L., Dehgardi N., Furuya M., Sheikholeslami S. M. and Volkmann L., “The $k$-rainbow reinforcement numbers in graphs”, Discrete Appl. Math., 217 (2017), 394–404 | DOI
[4] Amjadi J., Sadeghi H., “Double Roman reinforcement number in graphs”, AKCE Int. J. Graphs Comb., 18:3 (2021), 191–199 | DOI
[5] Ebrahimi N., Amjadi J., Chellali M., Sheikholeslami S.M., “Quasi-total Roman reinforcement in graphs”, AKCE Int. J. Graphs Comb., 2022, 1–8 | DOI
[6] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979, 340 pp.
[7] Hao G., Sheikholeslami S. M., Wei S., “Italian reinforcement number in graphs”, IEEE Access, 7 (2019), 184448 | DOI
[8] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998, 446 pp. | DOI
[9] Jafari Rad N., Sheikholeslami S. M., “Roman reinforcement in graphs”, Bull. Inst. Combin. Appl., 61 (2011), 81–90
[10] Kok J., Mynhardt C. M., “Reinforcement in graphs”, Congr. Numer., 79 (1990), 225–231
[11] Pushpam P. R. L., Padmapriea S., “Restrained Roman domination in graphs”, Trans. Comb., 4:1 (2015), 1–17 | DOI
[12] Samadi B., Soltankhah N., Abdollahzadeh Ahangar H., Chellali M., Mojdeh D. A., Sheikholeslami S. M., Valenzuela-Tripodoro J. C., “Restrained condition on double Roman dominating functions”, Appl. Math. Comput., 438 (2023), 127554 | DOI
[13] Shahbazi L., Abdollahzadeh Ahangar H., Khoeilar R., Shekholeslami S. M., “Total $k$-rainbow reinforcement number in graphs”, Discrete Math. Algorithms Appl., 13:1 (2021), 2050101 | DOI
[14] Siahpour F., Abdollahzadeh Ahangar H., Sheikholeslami S. M., “Some progress on the restrained Roman domination”, Bull. Malays. Math. Sci. Soc., 44:7 (2021), 733–751 | DOI
[15] Volkmann L., “Remarks on the restrained Italian domination number in graphs”, Commun. Comb. Optim., 8:1 (2023), 183–191 | DOI
[16] Volkmann L., “Restrained double Italian domination in graphs”, Commun. Comb. Optim., 8:1 (2023), 1–11 | DOI