@article{UMJ_2022_8_2_a4,
author = {Abbes Benchaabane},
title = {Approximate controllability of impulsive stochastic systems driven by {Rosenblatt} process and {Brownian} motion},
journal = {Ural mathematical journal},
pages = {59--70},
year = {2022},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a4/}
}
TY - JOUR AU - Abbes Benchaabane TI - Approximate controllability of impulsive stochastic systems driven by Rosenblatt process and Brownian motion JO - Ural mathematical journal PY - 2022 SP - 59 EP - 70 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a4/ LA - en ID - UMJ_2022_8_2_a4 ER -
Abbes Benchaabane. Approximate controllability of impulsive stochastic systems driven by Rosenblatt process and Brownian motion. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 59-70. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a4/
[1] Abid S. H., Hasan S. Q., Quaez U. J., “Approximate controllability of fractional stochastic integro-differential equations driven by mixed fractional Brownian motion”, Amer. J. Math. Stat., 5:2 (2015), 72–81 10.5923.j.ajms.20150502.04.html
[2] Ahmed H. M., “Hilfer fractional neutral stochastic partial differential equations with delay driven by Rosenblatt process”, J. Control Decis., 9:2 (2022), 226–243 | DOI
[3] Anguraj A., Ravikumar K., Baleanu D., “Approximate controllability of a semilinear impulsive stochastic system with nonlocal conditions and Poisson jumps”, Adv. Differ. Equ., 2020, 65 | DOI
[4] Benchaabane A., “Complete controllability of general stochastic integrodifferential Systems”, Math. Reports, 18:4 (2016), 437–448
[5] Chen Q., Debbouche A., Luo Z., Wang J., “Impulsive fractional differential equations with Riemann–Liouville derivative and iterative learning control”, Chaos Solitons Fractals, 102 (2017), 111–118 | DOI
[6] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992, 454 pp.
[7] Dhayal R., Malik M., “Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses”, Chaos Solitons Fractals, 151 (2021), 111292 | DOI
[8] Dineshkumar C., Udhayakumar R., Vijayakumar V., Nisar K. S., “A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems”, Chaos Solitons Fractals, 142 (2021), 110472 | DOI
[9] Dou F., Lu Q., “Partial approximate controllability for linear stochastic control systems”, SIAM J. Control Optim., 57:2 (2019), 1209–1229 | DOI
[10] Huang H., Wu Z., Hu L. et al., “Existence and controllability of second-order neutral impulsive stochastic evolution integro-differential equations with state-dependent delay”, J. Fixed Point Theory Appl., 20 (2018), 9 | DOI
[11] Kalman R. E., Ho Y. C., Narendra K. S., “Controllability of linear dynamic systems”, Contrib. Differ. Equ., 1 (1963), 189–213
[12] Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations, v. 6, Modern Appl. Math., World scientific, 1989, 288 pp. | DOI
[13] Leonenko N. N., Anh V. V., “Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence”, J. Appl. Math. Stoch. Anal., 14:1 (2001), 780430, 27–46 | DOI
[14] Li X., Liu X., “Approximate controllability for Hilfer fractional stochastic evolution inclusion with nonlocal conditions”, Stoch. Anal. Appl., 2022, 1–25 | DOI
[15] Ramkumar K., Ravikumar K., “Controllability of neutral impulsive stochastic integrodifferential equations driven by a Rosenblatt process and unbounded delay”, Discontinuity, Nonlinearity, and Complexity, 10:2 (2021), 311–321 | DOI
[16] Rosenblatt M., “Independence and dependence”, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., v. 2: Contrib. Probab. Theory, 1961, 431–443
[17] Samoilenko A. M., Perestyuk N. A., Impulsive Differential Equations, v. 14, World Sci. Ser. Nonlinear Sci. Ser. A, World Scientific, 1995, 472 pp. | DOI
[18] Saravanakumar S., Balasubramaniam P., “On impulsive Hilfer fractional stochastic differential system driven by Rosenblatt process”, Stoch. Anal. Appl., 37:6 (2019), 955–976 | DOI
[19] Saravanakumar S., Balasubramaniam P., “Approximate controllability of nonlinear Hilfer fractional stochastic differential system with Rosenblatt process and Poisson jumps”, Int. J. Nonlinear Sci. Numer. Simul., 21:7–8 (2020), 727–737 | DOI
[20] Sathiyaraj T., Wang J., O'Regan D., “Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution”, Proc. Roy. Soc. Edinburgh Sect. A, 151:1 (2021), 217–239 | DOI
[21] Shen G., Ren Y., “Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space”, J. Korean Statist. Soc., 44:1 (2015), 123–133 | DOI
[22] Shen G., Sakthivel R., Ren Y., Li M., “Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process”, Collect. Math., 71:1 (2020), 63–82 | DOI
[23] Shukla A., Vijayakumar V., Nissar K. S., “A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r\in(1, 2)$”, Chaos Solitons Fractals, 154 (2022), 111615 | DOI
[24] Shukla A., Vijayakumar V., Nisar K. S., et al., “An analysis on approximate controllability of semilinear control systems with impulsive effects”, Alexandria Eng. J., 61:12 (2022), 12293–12299 | DOI
[25] Singh V., Chaudhary R., Pandey D. N., “Approximate controllability of second-order non-autonomous stochastic impulsive differential systems”, Stoch. Anal. Appl., 39:2 (2020), 339–356
[26] Tamilalagan P., Balasubramaniam P., “Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators”, Internat. J. Control, 90:8 (2017), 1713–1727 | DOI
[27] Taqqu M. S., “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 31 (1975), 287–302 | DOI
[28] Tudor C. A., “Analysis of the Rosenblatt process”, ESAIM: Prob. Stat., 12 (2008), 230–257 | DOI
[29] Xu L., Ge Sh. S., Hu H., “Boundedness and stability analysis for impulsive stochastic differential equations driven by $G$-Brownian motion”, Internat. J. Control, 92:3 (2019), 642–652 | DOI