A characterization of derivations and automorphisms on some simple algebras
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 46-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we study simple algebras, which do not belong to the well-known classes of algebras (associative algebras, alternative algebras, Lie algebras, Jordan algebras, etc.). The simple finite-dimensional algebras over a field of characteristic $0$ without finite basis of identities, constructed by Kislitsin, are such algebras. In the present paper, we consider two such algebras: the simple seven-dimensional anticommutative algebra $\mathcal{D}$ and the seven-dimensional central simple commutative algebra $\mathcal{C}$. We prove that every local derivation of these algebras $\mathcal{D}$ and $\mathcal{C}$ is a derivation, and every $2$-local derivation of these algebras $\mathcal{D}$ and $\mathcal{C}$ is also a derivation. We also prove that every local automorphism of these algebras $\mathcal{D}$ and $\mathcal{C}$ is an automorphism, and every $2$-local automorphism of these algebras $\mathcal{D}$ and $\mathcal{C}$ is also an automorphism.
Keywords: simple algebra, derivation, local derivation, 2-local derivation, local automorphism, 2-local automorphism, basis of identities.
Mots-clés : automorphism
@article{UMJ_2022_8_2_a3,
     author = {Farhodjon Arzikulov and Furkat Urinboyev and Shahlo Ergasheva},
     title = {A characterization of derivations and automorphisms on some simple algebras},
     journal = {Ural mathematical journal},
     pages = {46--58},
     year = {2022},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a3/}
}
TY  - JOUR
AU  - Farhodjon Arzikulov
AU  - Furkat Urinboyev
AU  - Shahlo Ergasheva
TI  - A characterization of derivations and automorphisms on some simple algebras
JO  - Ural mathematical journal
PY  - 2022
SP  - 46
EP  - 58
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a3/
LA  - en
ID  - UMJ_2022_8_2_a3
ER  - 
%0 Journal Article
%A Farhodjon Arzikulov
%A Furkat Urinboyev
%A Shahlo Ergasheva
%T A characterization of derivations and automorphisms on some simple algebras
%J Ural mathematical journal
%D 2022
%P 46-58
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a3/
%G en
%F UMJ_2022_8_2_a3
Farhodjon Arzikulov; Furkat Urinboyev; Shahlo Ergasheva. A characterization of derivations and automorphisms on some simple algebras. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 46-58. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a3/

[1] Ayupov Sh., Arzikulov F., “$2$-Local derivations on semi-finite von Neumann algebras”, Glasg. Math. J., 56:1 (2014), 9–12 | DOI

[2] Ayupov Sh., Arzikulov F., “$2$-Local derivations on associative and Jordan matrix rings over commutative rings”, Linear Algebra Appl., 522 (2017), 28–50 | DOI

[3] Ayupov Sh., Kudaybergenov K., “$2$-Local derivations and automorphisms on $B(H)$”, J. Math. Anal. Appl., 395:1 (2012), 15–18 | DOI

[4] Ayupov Sh., Kudaybergenov K., “$2$-Local derivations on von Neumann algebras”, Positivity, 19 (2015), 445–455 | DOI

[5] Ayupov Sh., Kudaybergenov K., “$2$-Local automorphisms on finite-dimensional Lie algebras”, Linear Algebra Appl., 507 (2016), 121–131 | DOI

[6] Ayupov Sh., Kudaybergenov K., “Local derivations on finite-dimensional Lie algebras”, Linear Algebra Appl., 493 (2016), 381–398 | DOI

[7] Ayupov Sh., Kudaybergenov K., Omirov B., “Local and $2$-local derivations and automorphisms on simple Leibniz algebras”, Bull. Malays. Math. Sci. Soc., 43 (2020), 2199–2234 | DOI

[8] Ayupov Sh., Kudaybergenov K., Rakhimov I., “$2$-Local derivations on finite-dimensional Lie algebras”, Linear Algebra Appl., 474 (2015), 1–11 | DOI

[9] Chen Z., Wang D., “$2$-Local automorphisms of finite-dimensional simple Lie algebras”, Linear Algebra Appl., 486 (2015), 335–344 | DOI

[10] Costantini M., “Local automorphisms of finite dimensional simple Lie algebras”, Linear Algebra Appl., 562 (2019), 123–134 | DOI

[11] Filippov V. T., “$\delta$-derivations of prime alternative and Mal'tsev algebras”, Algebra Logic, 39 (2000), 354–358 | DOI

[12] Kadison R. V., “Local derivations”, J. Algebra, 130:2 (1990), 494–509 | DOI

[13] Kaǐgorodov I., “On $(n+1)$-ary derivations of simple $n$-ary Mal'tsev algebras”, St. Petersburg Math. J., 25 (2014), 575–585 | DOI

[14] Kaygorodov I., Popov Yu., “A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations”, J. Algebra, 456 (2016), 323–347 | DOI

[15] Khrypchenko M., “Local derivations of finitary incidence algebras”, Acta Math. Hungar., 154 (2018), 48–55 | DOI

[16] Kim S. O., Kim J. S., “Local automorphisms and derivations on $M_n$”, Proc. Amer. Math. Soc., 132:5 (2004), 1389–1392

[17] Isaev I. M., Kislitsin A. V., “An example of a simple finite-dimensional algebra with no finite basis of identities”, Dokl. Math., 86:3 (2012), 774–775 | DOI

[18] Isaev I. M., Kislitsin A. V., “Example of simple finite dimensional algebra with no finite basis of its identities”, Comm. Algebra, 41:12 (2013), 4593–4601 | DOI

[19] Kislitsin A. V., “An example of a central simple commutative finite-dimensional algebra with an infinite basis of identities”, Algebra Logic, 54 (2015), 204–210 | DOI

[20] Kislitsin A. V., “Simple finite-dimensional algebras without finite basis of identities”, Sib. Math. J., 58 (2017), 461–466 | DOI

[21] Larson D. R., Sourour A. R., “Local derivations and local automorphisms of $B(X)$”, Proc. Sympos. Pure Math., Providence, Rhode Island. Part 2, 1990, 187–194 http://hdl.handle.net/1828/2373

[22] Lin Y.-F., Wong T.-L., “A note on $2$-local maps”, Proc. Edinb. Math. Soc. (2), 49:3 (2006), 701–708 | DOI

[23] Mal'tsev A. I., “Analytic loops”, Mat. Sb. (N.S.), 36(78):3 (1955), 569–576 (in Russian)

[24] Šemrl P., “Local automorphisms and derivations on $B(H)$”, Proc. Amer. Math. Soc., 125 (1997), 2677–2680 | DOI