Mots-clés : automorphism
@article{UMJ_2022_8_2_a3,
author = {Farhodjon Arzikulov and Furkat Urinboyev and Shahlo Ergasheva},
title = {A characterization of derivations and automorphisms on some simple algebras},
journal = {Ural mathematical journal},
pages = {46--58},
year = {2022},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a3/}
}
TY - JOUR AU - Farhodjon Arzikulov AU - Furkat Urinboyev AU - Shahlo Ergasheva TI - A characterization of derivations and automorphisms on some simple algebras JO - Ural mathematical journal PY - 2022 SP - 46 EP - 58 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a3/ LA - en ID - UMJ_2022_8_2_a3 ER -
Farhodjon Arzikulov; Furkat Urinboyev; Shahlo Ergasheva. A characterization of derivations and automorphisms on some simple algebras. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 46-58. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a3/
[1] Ayupov Sh., Arzikulov F., “$2$-Local derivations on semi-finite von Neumann algebras”, Glasg. Math. J., 56:1 (2014), 9–12 | DOI
[2] Ayupov Sh., Arzikulov F., “$2$-Local derivations on associative and Jordan matrix rings over commutative rings”, Linear Algebra Appl., 522 (2017), 28–50 | DOI
[3] Ayupov Sh., Kudaybergenov K., “$2$-Local derivations and automorphisms on $B(H)$”, J. Math. Anal. Appl., 395:1 (2012), 15–18 | DOI
[4] Ayupov Sh., Kudaybergenov K., “$2$-Local derivations on von Neumann algebras”, Positivity, 19 (2015), 445–455 | DOI
[5] Ayupov Sh., Kudaybergenov K., “$2$-Local automorphisms on finite-dimensional Lie algebras”, Linear Algebra Appl., 507 (2016), 121–131 | DOI
[6] Ayupov Sh., Kudaybergenov K., “Local derivations on finite-dimensional Lie algebras”, Linear Algebra Appl., 493 (2016), 381–398 | DOI
[7] Ayupov Sh., Kudaybergenov K., Omirov B., “Local and $2$-local derivations and automorphisms on simple Leibniz algebras”, Bull. Malays. Math. Sci. Soc., 43 (2020), 2199–2234 | DOI
[8] Ayupov Sh., Kudaybergenov K., Rakhimov I., “$2$-Local derivations on finite-dimensional Lie algebras”, Linear Algebra Appl., 474 (2015), 1–11 | DOI
[9] Chen Z., Wang D., “$2$-Local automorphisms of finite-dimensional simple Lie algebras”, Linear Algebra Appl., 486 (2015), 335–344 | DOI
[10] Costantini M., “Local automorphisms of finite dimensional simple Lie algebras”, Linear Algebra Appl., 562 (2019), 123–134 | DOI
[11] Filippov V. T., “$\delta$-derivations of prime alternative and Mal'tsev algebras”, Algebra Logic, 39 (2000), 354–358 | DOI
[12] Kadison R. V., “Local derivations”, J. Algebra, 130:2 (1990), 494–509 | DOI
[13] Kaǐgorodov I., “On $(n+1)$-ary derivations of simple $n$-ary Mal'tsev algebras”, St. Petersburg Math. J., 25 (2014), 575–585 | DOI
[14] Kaygorodov I., Popov Yu., “A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations”, J. Algebra, 456 (2016), 323–347 | DOI
[15] Khrypchenko M., “Local derivations of finitary incidence algebras”, Acta Math. Hungar., 154 (2018), 48–55 | DOI
[16] Kim S. O., Kim J. S., “Local automorphisms and derivations on $M_n$”, Proc. Amer. Math. Soc., 132:5 (2004), 1389–1392
[17] Isaev I. M., Kislitsin A. V., “An example of a simple finite-dimensional algebra with no finite basis of identities”, Dokl. Math., 86:3 (2012), 774–775 | DOI
[18] Isaev I. M., Kislitsin A. V., “Example of simple finite dimensional algebra with no finite basis of its identities”, Comm. Algebra, 41:12 (2013), 4593–4601 | DOI
[19] Kislitsin A. V., “An example of a central simple commutative finite-dimensional algebra with an infinite basis of identities”, Algebra Logic, 54 (2015), 204–210 | DOI
[20] Kislitsin A. V., “Simple finite-dimensional algebras without finite basis of identities”, Sib. Math. J., 58 (2017), 461–466 | DOI
[21] Larson D. R., Sourour A. R., “Local derivations and local automorphisms of $B(X)$”, Proc. Sympos. Pure Math., Providence, Rhode Island. Part 2, 1990, 187–194 http://hdl.handle.net/1828/2373
[22] Lin Y.-F., Wong T.-L., “A note on $2$-local maps”, Proc. Edinb. Math. Soc. (2), 49:3 (2006), 701–708 | DOI
[23] Mal'tsev A. I., “Analytic loops”, Mat. Sb. (N.S.), 36(78):3 (1955), 569–576 (in Russian)
[24] Šemrl P., “Local automorphisms and derivations on $B(H)$”, Proc. Amer. Math. Soc., 125 (1997), 2677–2680 | DOI