On one inequality of different metrics for trigonometric polynomials
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 27-45
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the sharp inequality between the uniform norm and $L^p(0,\pi/2)$-norm of polynomials in the system $\mathscr{C}=\{\cos (2k+1)x\}_{k=0}^\infty$ of cosines with odd harmonics. We investigate the limit behavior of the best constant in this inequality with respect to the order $n$ of polynomials as $n\to\infty$ and provide a characterization of the extremal polynomial in the inequality for a fixed order of polynomials.
Keywords:
trigonometric cosine polynomial in odd harmonics, Nikol'skii different metrics inequality.
@article{UMJ_2022_8_2_a2,
author = {Vitalii V. Arestov and Marina V. Deikalova},
title = {On one inequality of different metrics for trigonometric polynomials},
journal = {Ural mathematical journal},
pages = {27--45},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a2/}
}
TY - JOUR AU - Vitalii V. Arestov AU - Marina V. Deikalova TI - On one inequality of different metrics for trigonometric polynomials JO - Ural mathematical journal PY - 2022 SP - 27 EP - 45 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a2/ LA - en ID - UMJ_2022_8_2_a2 ER -
Vitalii V. Arestov; Marina V. Deikalova. On one inequality of different metrics for trigonometric polynomials. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 27-45. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a2/