On one inequality of different metrics for trigonometric polynomials
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 27-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the sharp inequality between the uniform norm and $L^p(0,\pi/2)$-norm of polynomials in the system $\mathscr{C}=\{\cos (2k+1)x\}_{k=0}^\infty$ of cosines with odd harmonics. We investigate the limit behavior of the best constant in this inequality with respect to the order $n$ of polynomials as $n\to\infty$ and provide a characterization of the extremal polynomial in the inequality for a fixed order of polynomials.
Keywords: trigonometric cosine polynomial in odd harmonics, Nikol'skii different metrics inequality.
@article{UMJ_2022_8_2_a2,
     author = {Vitalii V. Arestov and Marina V. Deikalova},
     title = {On one inequality of different metrics for trigonometric polynomials},
     journal = {Ural mathematical journal},
     pages = {27--45},
     year = {2022},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a2/}
}
TY  - JOUR
AU  - Vitalii V. Arestov
AU  - Marina V. Deikalova
TI  - On one inequality of different metrics for trigonometric polynomials
JO  - Ural mathematical journal
PY  - 2022
SP  - 27
EP  - 45
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a2/
LA  - en
ID  - UMJ_2022_8_2_a2
ER  - 
%0 Journal Article
%A Vitalii V. Arestov
%A Marina V. Deikalova
%T On one inequality of different metrics for trigonometric polynomials
%J Ural mathematical journal
%D 2022
%P 27-45
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a2/
%G en
%F UMJ_2022_8_2_a2
Vitalii V. Arestov; Marina V. Deikalova. On one inequality of different metrics for trigonometric polynomials. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 27-45. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a2/

[1] Arestov V. V., “Inequality of different metrics for trigonometric polynomials”, Math. Notes Acad. Sci. USSR, 27 (1980), 265–269 | DOI

[2] Arestov V. V., “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR-Izvestiya, 18:1 (1982), 1–17 | DOI

[3] Arestov V. V., “A characterization of extremal elements in some linear problems”, Ural Math. J., 3:2 (2017), 22–32 | DOI

[4] Arestov V., Babenko A., Deikalova M., Horváth Á., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line”, Anal. Math., 44:1 (2018), 21–42 | DOI

[5] Arestov V. V., Deikalova M. V., “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math., 284:Suppl. 1 (2014), 9–23 | DOI

[6] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI

[7] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with Jacobi weight of algebraic polynomials on an interval”, Analysis Math., 42:2 (2016), 91–120 | DOI

[8] Arestov V. V., Deikalova M. V., “On one generalized translation and the corresponding inequality of different metrics”, Trudy Inst. Mat. Mekh. UrO RAN, 28:4 (2022), 40–53 (in Russian) | DOI

[9] Arestov V., Deikalova M., Horváth Á., “On Nikol'skii type inequality between the uniform norm and the integral $q$-norm with Laguerre weight of algebraic polynomials on the half-line”, J. Approx. Theory, 222 (2017), 40–54 | DOI

[10] Babenko V., Kofanov V., Pichugov S., “Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions”, Approx. Theory: A volume dedicated to Blagovest Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 24–53

[11] Babenko V. F., Korneichuk N. P., Kofanov V., Pichugov S., Inequalities for Derivatives and Their Applications, Naukova Dumka, Kyiv, 2003, 590 pp. (in Russian)

[12] Badkov V. M., “Asymptotic and extremal properties of orthogonal polynomials corresponding to weight having singularities”, Proc. Steklov Inst. Math., 198 (1994), 37–82

[13] Erdélyi T., “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323 | DOI

[14] Hörmander L., Bernhardsson B., “An extension of Bohr's inequality”, Boundary Value Problems for Partial Differential Equations and Applications, v. 29, RMA Res. Notes Appl. Math., 1993, 179–194

[15] Ganzburg M., Tikhonov S., “On sharp constants in Bernstein–Nikolskii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI

[16] Gorbachev D. V., “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math., 2005, no. Suppl. 2, S117–S138

[17] Gorbachev D. V., “Sharp Bernstein–Nikol'skii inequalities for polynomials and entire functions of exponential type”, Chebyshevskii Sbornik, 22:5 (2021), 58–110 (in Russian) | DOI

[18] Gorbachev D. V., Mart'yanov I. A., “Interrelation between Nikol'skii–Bernstein constants for trigonometric polynomials and entire functions of exponential type”, Chebyshevskii Sbornik, 20:3 (2019), 143–153 (in Russian) | DOI

[19] Jackson D., “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906

[20] Korneichuk N. P., Extremal Problems of Approximation Theory [Ekstremal'nye Zadachi Teorii Priblizhenii], Nauka, Moscow, 1976, 320 pp. (in Russian)

[21] Korneichuk N. P., Babenko V. F., Ligun. A. A., Extremal Properties of Polynomials and Splines [Ekstremal'nye Svoistva Polinomov i Splainov], Naukova Dumka, Kyiv, 1992, 304 pp. (in Russian)

[22] Levin E., Lubinsky D., “$L_p$ Christoffel functions, $L_p$ universality, and Paley–Wiener spaces”, J. D'Analyse Math., 2015, no. 125, 243–283 | DOI

[23] Leont'eva A. O., “Bernstein–Szegő inequality for trigonometric polynomials in $L_p,$ $0\le p \le\infty,$ with the classical value of the best constant”, J. Approx. Theory, 276 (2022), 105713 | DOI

[24] Milovanović G. V., Mitrinović D. S., Rassias Th. M., Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Sci. Publ. Co., Singapore etc., 1994, 836 pp.

[25] Nikol'skii S. M., “Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables”, Trudy MIAN SSSR, 38 (1951), 244–278 (in Russian)

[26] Springer, New York, 1975, 420 pp. | DOI

[27] Pólya G., Szegő G., Problems and Theorems in Analysis, v. 1, Springer, Berlin, 1972, 392 pp. ; v. 2, Springer, Berlin, 1976, 393 pp. | DOI | DOI

[28] Simonov I. E., Glazyrina P. Yu., “Sharp Markov–Nikol'skii inequality with respect to the uniform norm and the integral norm with Chebyshev weight”, J. Approx. Theory, 2015, no. 192, 69–81 | DOI

[29] Taikov L. V., “A group of extremal problems for trigonometric polynomials”, Uspekhi Mat. Nauk, 20:3 (1965), 205–211 (in Russian)

[30] Taikov L. V., “On the best approximation of Dirichlet kernels”, Math Notes, 53, 640–643 | DOI

[31] Pergamon Press, New York, 1963, 631 pp. | DOI