Mots-clés : discrete Riquier problem
@article{UMJ_2022_8_2_a14,
author = {Manivannan Varadha Raj and Venkataraman Madhu},
title = {Biharmonic {Green} function and bisupermedian on infinite networks},
journal = {Ural mathematical journal},
pages = {177--186},
year = {2022},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a14/}
}
Manivannan Varadha Raj; Venkataraman Madhu. Biharmonic Green function and bisupermedian on infinite networks. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a14/
[1] Abodayeh K., Anandam V., “Bipotential and biharmonic potential on infinite network”, Int. J. Pure. Appl. Math., 112:2 (2017), 321–332 | DOI
[2] Abodayeh K., Anandam V., “Schrödinger networks and their Cartesian products”, Math. Methods Appl. Sci., 44:6, 4342–4347 | DOI
[3] Al-Gwaiz M. A., Anandam V., “On the representation of biharmonic functions with singularities in $\mathbb{R}^n$”, Indian J. Pure Appl. Math., 44:3 (2013), 263–276 | DOI
[4] Anandam V., Harmonic Functions and Potentials on Finite or Infinite Networks, v. 12, Lect. Notes Unione Mat. Ital, Springer, Berlin, Heidelberg, 2011 | DOI
[5] Anandam V., “Some potential-theoretic techniques in non-reversible Markov chains”, Rend. Circ. Mat. Palermo (2), 62:2 (2013), 273–284
[6] Anandam V., “Biharmonic classification of harmonic spaces”, Rev. Roumaine Math. Pures Appl., 41 (2000), 383–395
[7] Bendito E., Carmona Á., Encinas A. M., “Potential theory for Schrödinger operators on finite networks”, Rev. Mat. Iberoamenicana, 21:3 (2005), 771–818 | DOI
[8] Brelot M., “Les étapes et les aspects multiples de la théorie du potential”, Enseign. Math., II. Sér. 18, 58 (1972), 1–36 (in French)
[9] Lyons T. A simple criterion for transience of a reversible Markov chain, Ann. Probab., 11:2 (1983), 393–402 | DOI
[10] Nash-Williams C. St J. A., “Random walk and electric currents in networks”, Math. Proc. Camb. Philos. Soc., 55:2 (1959), 181–195 | DOI
[11] Venkataraman M., “Laurent decomposition for harmonic and biharmonic functions in an infinite network”, Hokkaido Math. J., 42:3 (2013), 345–356 | DOI
[12] Woess W., Random Walks on Infinite Graphs and Groups, v. 138, Cambrige Tracts in Mathematics, Cambridge University Press, Cambridge, 2000, 334 pp. | DOI
[13] Zemanian A. H., Infinite Electrical Networks, v. 101, Cambrige Tracts in Mathematics, Cambridge University Press, Cambridge, 1991, 308 pp. | DOI