Biharmonic Green function and bisupermedian on infinite networks
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 177-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we have discussed Biharmonic Green function on an infinite network and bimedian functions. We have proved some standard results in terms of supermedian and bimedian. Also, we have proved the Discrete Riquier problem in the setting of bimedian functions.
Keywords: biharmonic Green function, bimedian function, Dirichlet problem, hyperbolic networks.
Mots-clés : discrete Riquier problem
@article{UMJ_2022_8_2_a14,
     author = {Manivannan Varadha Raj and Venkataraman Madhu},
     title = {Biharmonic {Green} function and bisupermedian on infinite networks},
     journal = {Ural mathematical journal},
     pages = {177--186},
     year = {2022},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a14/}
}
TY  - JOUR
AU  - Manivannan Varadha Raj
AU  - Venkataraman Madhu
TI  - Biharmonic Green function and bisupermedian on infinite networks
JO  - Ural mathematical journal
PY  - 2022
SP  - 177
EP  - 186
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a14/
LA  - en
ID  - UMJ_2022_8_2_a14
ER  - 
%0 Journal Article
%A Manivannan Varadha Raj
%A Venkataraman Madhu
%T Biharmonic Green function and bisupermedian on infinite networks
%J Ural mathematical journal
%D 2022
%P 177-186
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a14/
%G en
%F UMJ_2022_8_2_a14
Manivannan Varadha Raj; Venkataraman Madhu. Biharmonic Green function and bisupermedian on infinite networks. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a14/

[1] Abodayeh K., Anandam V., “Bipotential and biharmonic potential on infinite network”, Int. J. Pure. Appl. Math., 112:2 (2017), 321–332 | DOI

[2] Abodayeh K., Anandam V., “Schrödinger networks and their Cartesian products”, Math. Methods Appl. Sci., 44:6, 4342–4347 | DOI

[3] Al-Gwaiz M. A., Anandam V., “On the representation of biharmonic functions with singularities in $\mathbb{R}^n$”, Indian J. Pure Appl. Math., 44:3 (2013), 263–276 | DOI

[4] Anandam V., Harmonic Functions and Potentials on Finite or Infinite Networks, v. 12, Lect. Notes Unione Mat. Ital, Springer, Berlin, Heidelberg, 2011 | DOI

[5] Anandam V., “Some potential-theoretic techniques in non-reversible Markov chains”, Rend. Circ. Mat. Palermo (2), 62:2 (2013), 273–284

[6] Anandam V., “Biharmonic classification of harmonic spaces”, Rev. Roumaine Math. Pures Appl., 41 (2000), 383–395

[7] Bendito E., Carmona Á., Encinas A. M., “Potential theory for Schrödinger operators on finite networks”, Rev. Mat. Iberoamenicana, 21:3 (2005), 771–818 | DOI

[8] Brelot M., “Les étapes et les aspects multiples de la théorie du potential”, Enseign. Math., II. Sér. 18, 58 (1972), 1–36 (in French)

[9] Lyons T. A simple criterion for transience of a reversible Markov chain, Ann. Probab., 11:2 (1983), 393–402 | DOI

[10] Nash-Williams C. St J. A., “Random walk and electric currents in networks”, Math. Proc. Camb. Philos. Soc., 55:2 (1959), 181–195 | DOI

[11] Venkataraman M., “Laurent decomposition for harmonic and biharmonic functions in an infinite network”, Hokkaido Math. J., 42:3 (2013), 345–356 | DOI

[12] Woess W., Random Walks on Infinite Graphs and Groups, v. 138, Cambrige Tracts in Mathematics, Cambridge University Press, Cambridge, 2000, 334 pp. | DOI

[13] Zemanian A. H., Infinite Electrical Networks, v. 101, Cambrige Tracts in Mathematics, Cambridge University Press, Cambridge, 1991, 308 pp. | DOI