A quadruple integral involving the exponential logarithm of quotient radicals in terms of the Hurwitz-Lerch Zeta function
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 153-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With a possible connection to integrals used in General Relativity, we used our contour integral method to write a closed form solution for a quadruple integral involving exponential functions and logarithm of quotient radicals. Almost all Hurwitz–Lerch Zeta functions have an asymmetrical zero-distribution. All the results in this work are new.
Keywords: quadruple integral, Hhurwitz-Lerch Zeta function, Cauchy integral
Mots-clés : Catalan's constant, Glaisher's constant.
@article{UMJ_2022_8_2_a12,
     author = {Robert Reynolds and Allan Stauffer},
     title = {A quadruple integral involving the exponential logarithm of quotient radicals in terms of the {Hurwitz-Lerch} {Zeta} function},
     journal = {Ural mathematical journal},
     pages = {153--161},
     year = {2022},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a12/}
}
TY  - JOUR
AU  - Robert Reynolds
AU  - Allan Stauffer
TI  - A quadruple integral involving the exponential logarithm of quotient radicals in terms of the Hurwitz-Lerch Zeta function
JO  - Ural mathematical journal
PY  - 2022
SP  - 153
EP  - 161
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a12/
LA  - en
ID  - UMJ_2022_8_2_a12
ER  - 
%0 Journal Article
%A Robert Reynolds
%A Allan Stauffer
%T A quadruple integral involving the exponential logarithm of quotient radicals in terms of the Hurwitz-Lerch Zeta function
%J Ural mathematical journal
%D 2022
%P 153-161
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a12/
%G en
%F UMJ_2022_8_2_a12
Robert Reynolds; Allan Stauffer. A quadruple integral involving the exponential logarithm of quotient radicals in terms of the Hurwitz-Lerch Zeta function. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 153-161. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a12/

[1] Erdéyli A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. I, McGraw-Hill Book Company, Inc.,, New York, 1953, 302 pp.

[2] Eckert E. R. G., Goldstein R. J., Measurements in Heat Transfer, 2nd ed., Hemisphere Pub. Corp., 1976, 642 pp.

[3] Gakhov F. D., “Review of “Calculus of Integrals of Higher Transcendental Functions (The Theory and Tables of Formulas)”, by O. I. Marichev, Minsk, Nauka i Tekhnika, 1978”, ACM SIGSAM Bulletin, 13:3 (1979), 7 | DOI

[4] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series and Products, 6th ed., Academic Press, Cambridge, MA, USA, 2000, 1133 pp. | DOI

[5] Kleinert H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 4th ed., World Sci. Publ. Co., 2006, 1624 pp. | DOI

[6] Langer U., Paule P., Numerical and Symbolic Scientific Computing: Progress and Prospects, Texts Monogr. Symbol. Comput., Springer-Verlag, Wien, 2012, 358 pp. | DOI

[7] Lewin L., Polylogarithms and Associated Functions, North-Holland Publ. Co., Amsterdam, 1981, 359 pp.

[8] MacDonald H. M., Electric Waves, University Press, Cambridge, 1902, 200 pp.

[9] Nikolova N. K., Introduction to Microwave Imaging, Cambridge Univ. Press, Cambridge, 2017, 343 pp. | DOI

[10] NIST Digital Library of Mathematical Functions, MR 2723248 (2012a:33001), eds. Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., Department of Commerce, National Inst. Standards Technology, Cambridge Univ. Press,, Washington, Cambridge, 2010 https://dlmf.nist.gov

[11] Oldham K. B., Myland J. C., Spanier J., An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed., Springer, New York, 2009, 748 pp. | DOI

[12] Poincaré H., The Three-Body Problem and the Equations of Dynamics: Poincaré's Foundational Work on Dynamical Systems Theory, Springer, Cham, 2017, 248 pp. | DOI

[13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 3, More Special Functions, Gordon Breach Sci Publ., New York, London, 1989, 800 pp.

[14] Reynolds R., Stauffer A., “A method for evaluating definite integrals in terms of special functions with examples”, Int. Math. Forum, 15:5 (2020), 235–244 | DOI