Inequalities pertaining to rational functions with prescribed poles
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 143-152

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Re_n$ be the set of all rational functions of the type $r(z) = p(z)/w(z),$ where $p(z)$ is a polynomial of degree at most $n$ and $w(z) = \prod_{j=1}^{n}(z-a_j)$, $|a_j|>1$ for $1\leq j\leq n$. In this paper, we set up some results for rational functions with fixed poles and restricted zeros. The obtained results bring forth generalizations and refinements of some known inequalities for rational functions and in turn produce generalizations and refinements of some polynomial inequalities as well.
Keywords: rational functions, polynomials, inequalities.
@article{UMJ_2022_8_2_a11,
     author = {Nisar Ahmad Rather and Mohmmad Shafi Wani and Ishfaq Dar},
     title = {Inequalities pertaining to rational functions with prescribed poles},
     journal = {Ural mathematical journal},
     pages = {143--152},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a11/}
}
TY  - JOUR
AU  - Nisar Ahmad Rather
AU  - Mohmmad Shafi Wani
AU  - Ishfaq Dar
TI  - Inequalities pertaining to rational functions with prescribed poles
JO  - Ural mathematical journal
PY  - 2022
SP  - 143
EP  - 152
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a11/
LA  - en
ID  - UMJ_2022_8_2_a11
ER  - 
%0 Journal Article
%A Nisar Ahmad Rather
%A Mohmmad Shafi Wani
%A Ishfaq Dar
%T Inequalities pertaining to rational functions with prescribed poles
%J Ural mathematical journal
%D 2022
%P 143-152
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a11/
%G en
%F UMJ_2022_8_2_a11
Nisar Ahmad Rather; Mohmmad Shafi Wani; Ishfaq Dar. Inequalities pertaining to rational functions with prescribed poles. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 143-152. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a11/