Mots-clés : bifurcation, bifurcation
@article{UMJ_2022_8_2_a10,
author = {Regan Murugesan and Sathish Kumar Kumaravel and Suresh Rasappan and Wardah Abdullah Al Majrafi},
title = {Analysis of the growth rate of feminine mosquito through difference equations},
journal = {Ural mathematical journal},
pages = {133--142},
year = {2022},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a10/}
}
TY - JOUR AU - Regan Murugesan AU - Sathish Kumar Kumaravel AU - Suresh Rasappan AU - Wardah Abdullah Al Majrafi TI - Analysis of the growth rate of feminine mosquito through difference equations JO - Ural mathematical journal PY - 2022 SP - 133 EP - 142 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a10/ LA - en ID - UMJ_2022_8_2_a10 ER -
%0 Journal Article %A Regan Murugesan %A Sathish Kumar Kumaravel %A Suresh Rasappan %A Wardah Abdullah Al Majrafi %T Analysis of the growth rate of feminine mosquito through difference equations %J Ural mathematical journal %D 2022 %P 133-142 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a10/ %G en %F UMJ_2022_8_2_a10
Regan Murugesan; Sathish Kumar Kumaravel; Suresh Rasappan; Wardah Abdullah Al Majrafi. Analysis of the growth rate of feminine mosquito through difference equations. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 133-142. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a10/
[1] Aron J. L., “Mathematical modelling of immunity to malaria”, Math. Biosci., 90:1–2 (1988), 385–396 | DOI
[2] Cushing J. M., “Difference equations as models of evolutionary population dynamics”. J. Biol. Dynam., 13:1 (2019), 103–127 | DOI
[3] Dang Q. A., Hoang M. T., “Lyapunov direct method for investigating stability of nonstandard finite difference schemes for meta population models”, J. Difference Equ. Appl., 24:1 (2018), 15–47 | DOI
[4] Gümüş M., “The global asymptotic stability of a system of difference equations”, J. Difference Equ. Appl., 24:6 (2018), 976–991 | DOI
[5] Kangalgil F., Kartal S., “Stability and bifurcation analysis in a host-parasitoid model with Hassell growth function”, Adv. Differ. Equ., 2018 (2018), 240, 240–248 | DOI
[6] Kooi B. W., Aguiar M., Stollenwerk N., “Bifurcation analysis of a family of multi-strain epidemiology models”, J. Comput. Appl. Math., 252 (2013), 148–158 | DOI
[7] Nagaram N. B., Rasappan S., “A novel mathematical technique for stability analysis of plasmodium life cycle in hepatocyte”, Indian J. Public Health Research Development, 10:6 (2019), 1534–1544
[8] Nagaram N. B., Rasappan S., “Plasmodium life cycle in hepatocyte with varying population”, Indian J. of Public Health Research Development, 10:6 (2019), 1545–1558
[9] Ngwa G. A., Shu W. S., “A mathematical model for endemic malaria with variable human and mosquito populations”, Math. Comput. Model. Dyn. Syst., 32:7–8 (2000), 747–763 | DOI
[10] Rasappan S., Mohan K. R., “Balancing of nitrogen mass cycle for healthy living using mathematical model”, Mathematical Modeling and Soft Computing in Epidemiology, eds. J. Mishra, R. Agarwal, A. Atangana, CRC Press, Boca Raton, 2020, 199–215 | DOI
[11] Rasappan S., Mohan K. R., “Neutralizing of nitrogen when the changes of nitrogen content is rapid”, Mathematical Modeling and Soft Computing in Epidemiology, eds. J. Mishra, R. Agarwal, A. Atangana, CRC Press, Boca Raton, 2020, 217—229 | DOI
[12] Rasappan S., Murugesan R., “Computation of threshold rate for the spread of HIV in a mobile heterosexual population and its implication for sir model in healthcare”, Soft Computing Applications and Techniques in Healthcare, eds. A. Mishra, G. Suseendran, T.-N. Phung, CRC Press, Boca Raton, 2020, 97–112 | DOI
[13] Rasappan S., Nagaram N. B., “Stability analysis of a novel mathematical model of plasmodium life cycle in mosquito midgut”, Int. J. Innovative Technology Exploring Engineering, 8:9 (2019), 1811–1813 | DOI
[14] Smith D. L., et al., “Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens”, PLoS Pathog, 8:4 (2012), e1002588 | DOI
[15] Traoré B., Sangaré B., Traoré S., “A mathematical model of malaria transmission in a periodic environment”, J. Biol. Dyn., 12:1 (2018), 400–432 | DOI
[16] Vijayalakshmi G. M., Rasappan S., Rajan P., Nguyen H. H. C. The role of harvesting in a food chain model and its stability analysis, Proc. 2nd Int. Conf. Mathematical Modeling and Computational Science, v. 1422, Adv. Intell. Syst. Comput., eds. S.L. Peng, C.K. Lin, S. Pal, Springer, Singapore, 2022, 11–23 | DOI