Bessel polynomials and some connection formulas in terms of the action of linear differential operators
Ural mathematical journal, Tome 8 (2022) no. 2, pp. 4-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce the concept of the $\mathbb{B}_{\alpha}$-classical orthogonal polynomials, where $\mathbb{B}_{\alpha}$ is the raising operator $\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}$, with nonzero complex number $\alpha$ and $\mathbb{I}$ representing the identity operator. We show that the Bessel polynomials $B^{(\alpha)}_n(x),\ n\geq0$, where $\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}$, are the only $\mathbb{B}_{\alpha}$-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.
Keywords: classical orthogonal polynomials, linear functionals, Bessel polynomials, raising operators, connection formulas.
@article{UMJ_2022_8_2_a0,
     author = {Baghdadi Aloui and Jihad Souissi},
     title = {Bessel polynomials and some connection formulas in terms of the action of linear differential operators},
     journal = {Ural mathematical journal},
     pages = {4--12},
     year = {2022},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a0/}
}
TY  - JOUR
AU  - Baghdadi Aloui
AU  - Jihad Souissi
TI  - Bessel polynomials and some connection formulas in terms of the action of linear differential operators
JO  - Ural mathematical journal
PY  - 2022
SP  - 4
EP  - 12
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a0/
LA  - en
ID  - UMJ_2022_8_2_a0
ER  - 
%0 Journal Article
%A Baghdadi Aloui
%A Jihad Souissi
%T Bessel polynomials and some connection formulas in terms of the action of linear differential operators
%J Ural mathematical journal
%D 2022
%P 4-12
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a0/
%G en
%F UMJ_2022_8_2_a0
Baghdadi Aloui; Jihad Souissi. Bessel polynomials and some connection formulas in terms of the action of linear differential operators. Ural mathematical journal, Tome 8 (2022) no. 2, pp. 4-12. http://geodesic.mathdoc.fr/item/UMJ_2022_8_2_a0/

[1] Abdelkarim F., Maroni P., “The $D_{\omega}$-classical orthogonal polynomials”, Result. Math., 32 (1997), 1–28 | DOI

[2] Aloui B. Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator, Ramanujan J., 45 (2018), 475–481 | DOI

[3] Aloui B., “Chebyshev polynomials of the second kind via raising operator preserving the orthogonality”, Period. Math. Hung., 76 (2018), 126–132 | DOI

[4] Aloui B., Khériji L., “Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators”, Probl. Anal. Issues Anal., 8:3 (2019), 24–37 | DOI

[5] Aloui B., Souissi J., “Jacobi polynomials and some connection formulas in terms of the action of linear differential operators”, Bull. Belg. Math. Soc. Simon Stevin, 28:1 (2021), 39–51 | DOI

[6] Area I., Godoy A., Ronveaux A., Zarzo A., “Classical symmetric orthogonal polynomials of a discrete variable”, Integral Transforms Spec. Funct., 15:1 (2004), 1–12 | DOI

[7] Ben Salah I., Ghressi A., Khériji L., “A characterization of symmetric $T_{\mu}$-classical monic orthogonal polynomials by a structure relation”, Integral Transforms Spec. Funct., 25:6 (2014), 423–432 | DOI

[8] Bochner S., “Über Sturm-Liouvillesche Polynomsysteme”, Z. Math., 29 (1929), 730–736 ((in German)) | DOI

[9] Bouanani A., Khériji L., Tounsi M. I., “Characterization of $q$-Dunkl Appell symmetric orthogonal $q$-polynomials”, Expo. Math., 28 (2010), 325–336 | DOI

[10] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978, 249 pp.

[11] Hahn W., “Über die Jacobischen polynome und zwei verwandte Polynomklassen”, Z. Math., 39 (1935), 634—638 (in German)

[12] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71 (2002), 49–115 | DOI

[13] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric Orthogonal Polynomials and their $q$-Analogues, Springer, Berlin, Heidelberg, 2010, 578 pp. | DOI

[14] Koornwinder T. H., “Lowering and raising operators for some special orthogonal polynomials”, Jack, Hall-Littlewood and Macdonald, v. 417, Polynomials. Contemp. Math., eds. V.B. Kuznetsov, S. Sahi, Amer. Math. Soc., Providence, RI, 2006, 227–238 | DOI

[15] Maroni P., “Le calcul des formes linéaires et les polynômes orthogonaux semi-classiques”, Orthogonal polynomials and their applications, v. 1329, Lecture Notes in Math., eds. Alfaro M. et al., Springer, Berlin, Heidelberg, 1988, 279—290 (in French) | DOI

[16] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications, v. 9, IMACS Ann. Comput. Appl. Math., eds. C. Brezinski et al., Baltzer, Basel, 1991, 95–130

[17] Maroni P., “Variations autour des polynômes orthogonaux classiques”, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 209–212 (in French)

[18] Maroni P., “Variations around classical orthogonal polynomials. Connected problems”, J. Comput. Appl. Math., 48:1–2 (1993), 133–155 | DOI

[19] Maroni P., “Fonctions Eulériennes. Polynômes Orthogonaux Classiques”, Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales), 1994, A154, 1–30 (in French) | DOI

[20] Maroni P., Mejri M., “The $I_{(q,\omega)}$-classical orthogonal polynomials”, Appl. Numer. Math., 43:4 (2002), 423–458 | DOI

[21] Sonine N. J., “On the approximate computation of definite integrals and on the entire functions occurring there”, Warsch. Univ. Izv., 18 (1887), 1–76

[22] Srivastava H. M., Ben Cheikh Y., “Orthogonality of some polynomial sets via quasi-monomiality”, Appl. Math. Comput., 141 (2003), 415–425 | DOI

[23] Szegö G., Orthogonal Polynomials, v. 23, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, Rhode Island, 1975, 432 pp.