Mots-clés : compliment item
@article{UMJ_2022_8_1_a8,
author = {M. Nithya and C. Sugapriya and S. Selvakumar and K. Jeganathan and T. Harikrishnan},
title = {A {Markovian} two commodity queueing-inventory system with compliment item and classical retrial facility},
journal = {Ural mathematical journal},
pages = {90--116},
year = {2022},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a8/}
}
TY - JOUR AU - M. Nithya AU - C. Sugapriya AU - S. Selvakumar AU - K. Jeganathan AU - T. Harikrishnan TI - A Markovian two commodity queueing-inventory system with compliment item and classical retrial facility JO - Ural mathematical journal PY - 2022 SP - 90 EP - 116 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a8/ LA - en ID - UMJ_2022_8_1_a8 ER -
%0 Journal Article %A M. Nithya %A C. Sugapriya %A S. Selvakumar %A K. Jeganathan %A T. Harikrishnan %T A Markovian two commodity queueing-inventory system with compliment item and classical retrial facility %J Ural mathematical journal %D 2022 %P 90-116 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a8/ %G en %F UMJ_2022_8_1_a8
M. Nithya; C. Sugapriya; S. Selvakumar; K. Jeganathan; T. Harikrishnan. A Markovian two commodity queueing-inventory system with compliment item and classical retrial facility. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 90-116. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a8/
[1] Abate J., Whitt W., “Numerical inversion of Laplace transforms of probability distributions”, ORSA J. Comput., 7:1 (1995), 36–43 | DOI | Zbl
[2] Anbazhagan N., Arivarignan G., “Two commodity continuous review inventory system with coordinated reorder policy”, Int. J. Inf. Manag. Sci., 11:3 (2000), 19–30 | MR | Zbl
[3] Anbazhagan N., Arivarignan G., “Two commodity inventory system with individual and joint ordering policies”, Int. J. Manag. Syst., 19:2 (2003), 129–144
[4] Anbazhagan N., Arivarignan G., “Analysis of two commodity Markovian inventory system with lead time”, Korean J. Comput. Appl. Math., 8:2 (2001), 427, 427–438 | DOI | MR | Zbl
[5] Anbazhagan N., Jeganathan K., “Two-commodity Markovian inventory system with compliment and retrial demand”, J. Adv. Math. Comput. Sci., 3:2 (2013), 115–134 | DOI | MR
[6] Arivarignan G., Keerthana M., Sivakumar B., “A production inventory system with renewal and retrial demands”, Applied Probability and Stochastic Processes, Infosys Sci. Found. Ser., eds. Joshua V., Varadhan S., Vishnevsky V., Springer, Singapor, 2020, 129–142 | DOI | MR | Zbl
[7] Artalejo J. R., Krishnamoorthy A., Lopez-Herrero M. J., “Numerical analysis of $(s,S)$ inventory systems with repeated attempts”, Ann. Oper. Res., 141 (2006), 67–83 | DOI | MR | Zbl
[8] Benny B., Chakravarthy S. R., Krishnamoorthy A., “Queueing-inventory system with two commodities”, J. Indian Soc. Probab. Stat., 19:1 (2018), 437–454 | DOI
[9] Chakravarthy S. R., Krishnamoorthy A., Joshua V. C., “Analysis of a multi-server retrial queue with search of customers from the orbit.”, Perform. Eval., 63:8 (2006), 776–798 | DOI
[10] Goyal S. K., Satir A. T., “Joint replenishment inventory control: deterministic and stochastic models”, European J. Oper. Res., 38:1 (1989), 2–13 | DOI | MR | Zbl
[11] Jeganathan K., Reiyas M. A., Padmasekaran S., Lakshmanan K., “An $M/E_K/1/N$ queueing-inventory system with two service rates based on queue lengths”, Int. J. Appl. Comput. Math., 3:1 (2017), 357–386 | DOI | MR
[12] Jeganathan K., Melikov A. Z., Padmasekaran S. et al., “A stochastic inventory model with two queues and a flexible server”, Int. J. Appl. Comput. Math., 5:1 (2019), 21, 1–27 | DOI | MR | Zbl
[13] Jeganathan K., Reiyas M. A., “Two parallel heterogeneous servers Markovian inventory system with modified and delayed working vacations.”, Math. Comput. Simulation, 172 (2020), 273–304 | DOI | MR | Zbl
[14] Jeganathan K., Harikrishnan T., Selvakumar S. et al., “Analysis of interconnected arrivals on queueing-inventory system with two multi-server service channels and one retrial facility”, Electronics, 10:5 (2021), 1—35 | DOI
[15] Jose K. P., Reshmi, “A production inventory model with deteriorating items and retrial demands”, OPSEARCH, 58 (2021), 71–82, S. pp. | DOI | MR | Zbl
[16] Kalpakam S., Arivarignan G., “A coordinated multicommodity $(s, S)$ inventory system”, Math. Comput. Model., 18:11 (1993), 69–73 | DOI | Zbl
[17] Keerthana M., Saranya N., Sivakumar B., “A stochastic queueing-inventory system with renewal demands and positive lead time.”, Eur. J. Ind. Eng., 14:4 (2020), 443–484 | DOI
[18] Krishnamoorthy A., Iqbal Basha R., Lakshmy B., “Analysis of two commodity inventory problem”, Int. J. Inf. Manag. Sci., 5:1 (1994), 127–136 | MR | Zbl
[19] Krishnamoorthy A., Merlymol J., Ravindranathan., “Analysis of a bulk demand two commodity inventory problem”, Calcutta Stat. Assoc. Bull., 49:1–2 (1999), 193–194. | DOI | MR | Zbl
[20] Krishnamoorthy A., Manikandan R., Lakshmy B., “A revisit to queueing-inventory system with positive service time.”, Ann. Oper. Res., 233 (2015), 221–236 | DOI | MR | Zbl
[21] Krishnamoorthy A., Shajin D., Lakshmy B., “$GI/M/1$ type queueing-inventory systems with postponed work, reservation, cancellation and common life time”, Indian J. Pure Appl. Math., 47:2 (2016), 357–388 | DOI | MR | Zbl
[22] Krishnamoorthy A., Shajin D., “$MAP/PH/1$ retrial queueing-inventory system with orbital search and reneging of customers”, Analytical and Computational Methods in Probability Theory (ACMPT 2017), v. 10684, Lecture Notes in Comput. Sci., eds. Rykov V., Singpurwalla N., Zubkov A., Springer, Cham, 2017, 158–171 | DOI | Zbl
[23] Lakshmanan K., Padmasekaran S., Jeganathan K., “Mathematical analysis of queueing-inventory model with compliment and multiple working vacations.”, Int. J. Eng. Adv. Technol., 8:6 (2019), 4239–4240 | DOI
[24] Neuts M. F., Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, Dover Publication Inc., New York, 1994, 332 pp. | MR
[25] Senthil Kumar P., “A discrete time two commodity inventory system”, Int. J. Engrg. Res. Technol., 5:1 (2016), 708–719 | DOI
[26] Shajin D., Krishnamoorthy A., Dudin A. N. et al., “On a queueing-inventory system with advanced reservation and cancellation for the next $K$ time frames ahead: the case of overbooking”, Queueing Syst., 94 (2020), 3–37 | DOI | MR | Zbl
[27] Sivazlian B. D., “Stationary analysis of a multicommodity inventory system with interacting set-up costs”, SIAM J. App. Math., 20 (1971), 264–278 https://www.jstor.org/stable/2099925?seq=1 | DOI | MR | Zbl
[28] Sivakumar B., Anbazhagan N., Arivarignan G., “A two-commodity perishable inventory system”, ORiON, 21:2 (2005), 157–172 | DOI
[29] Sivakumar B., Anbazhagan N., Arivarignan G., “Two commodity continuous review perishable inventory system”, Int. J. Inf. Manag. Sci., 17:3 (2006), 47–64 | MR | Zbl
[30] Sivakumar B., Anbazhagan N., Arivarignan G., “Two-commodity inventory system with individual and joint ordering policies and renewal demands”, Stoch. Anal. Appl., 25:6 (2007), 1217–1241 | DOI | MR | Zbl
[31] Sivakumar B., “Two-commodity inventory system with retrial demand”, Eur. J. Oper. Res., 187:1 (2008), 70–83 | DOI | MR | Zbl
[32] {Ushakumari, “On $(s , S)$ inventory system with random lead time and repeated demands”, J. Appl. Math. Stochastic Anal., 2006 (2006), 81508, 1–22, V.} pp. | DOI | MR
[33] Yadavalli V. S. S., Anbazhagan N., Arivarignan G., “A two-commodity stochastic inventory system with lost sales”, Stoch. Anal. Appl., 22:2 (2004), 479–497 | DOI | MR | Zbl
[34] Yadavalli V. S. S., Arivarignan G., Anbazhagan N., “Two commodity coordinated inventory system with Markovian demand”, Asia-Pac. J. Oper. Res., 23:4 (2006), 497–508 | DOI | MR | Zbl
[35] Yadavalli V. S. S., Sivakumar B., Arivarignan G., Olufemi Adetunji., “A finite source multi-server inventory system with service facility”, Comput. Ind. Eng., 63 (2012), 739–753 | DOI
[36] Yadavalli V. S. S., Adetunji O., Sivakumar B., Arivarignan G., “Two-commodity perishable inventory system with bulk demand for one commodity”, S. Afr. J. Ind. Eng., 21:1 (2010), 137–155 | DOI | MR