Matrix resolving functions in the linear group pursuit problem with fractional derivatives
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 76-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In finite-dimensional Euclidean space, we analyze the problem of pursuit of a single evader by a group of pursuers, which is described by a system of differential equations with Caputo fractional derivatives of order $\alpha$. The goal of the group of pursuers is the capture of the evader by at least m different pursuers (the instants of capture may or may not coincide). As a mathematical basis, we use matrix resolving functions that are generalizations of scalar resolving functions. We obtain sufficient conditions for multiple capture of a single evader in the class of quasi-strategies. We give examples illustrating the results obtained.
Keywords: differential game, group pursuit, pursuer, evader, fractional derivatives.
@article{UMJ_2022_8_1_a7,
     author = {Alena I. Machtakova and Nikolai N. Petrov},
     title = {Matrix resolving functions in the linear group pursuit problem with fractional derivatives},
     journal = {Ural mathematical journal},
     pages = {76--89},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a7/}
}
TY  - JOUR
AU  - Alena I. Machtakova
AU  - Nikolai N. Petrov
TI  - Matrix resolving functions in the linear group pursuit problem with fractional derivatives
JO  - Ural mathematical journal
PY  - 2022
SP  - 76
EP  - 89
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a7/
LA  - en
ID  - UMJ_2022_8_1_a7
ER  - 
%0 Journal Article
%A Alena I. Machtakova
%A Nikolai N. Petrov
%T Matrix resolving functions in the linear group pursuit problem with fractional derivatives
%J Ural mathematical journal
%D 2022
%P 76-89
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a7/
%G en
%F UMJ_2022_8_1_a7
Alena I. Machtakova; Nikolai N. Petrov. Matrix resolving functions in the linear group pursuit problem with fractional derivatives. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 76-89. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a7/

[1] Blagodatskikh A. I., “Simultaneous multiple capture in a conflict-controlled process”, J. Appl. Math. Mech., 77:3 (2013), 314–320 | DOI | MR | Zbl

[2] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodejstvie grupp upravlyaemyh ob"ektov [Conflict Interaction of Groups of Controlled Objects], Udmurt State University, Izhevsk, 2009, 266 pp. (in Russian)

[3] Blaquière A., Gérard F., Leitmann G., Quantitative and Qualitative Differential Games, Academic Press, New York, London, 1969, 172 pp. | MR

[4] Bopardikar S. D., Suri S., “$k$-Capture in multiagent pursuit evasion, or the lion and the hyenas”, Theoret. Comput. Sci., 522 (2014), 13–23 | DOI | MR | Zbl

[5] Caputo M. Linear model of dissipation whose $Q$ is almost frequency independent-II, Geophys. R. Astr. Soc., 13:5 (1967), 529–539 | DOI

[6] Chikrii A. A., Conflict-Controlled Processes, Springer, Dordrecht, 1997, 404 pp. | DOI | MR

[7] Chikrii A. A., “Quasilinear controlled processes under conflict”, J. Math. Sci., 1996 Vol. 80, no. 1, 1489–1518 | DOI | MR | Zbl

[8] Chikrii A. A., Chikrii G. Ts., “Matrix resolving functions in game problems of dynamics”, Proc. Steklov Inst. Math., 291:Suppl. 1 (2015), 56–65 | DOI | MR

[9] Chikrii A. A., Machikhin I. I., “On an analogue of the Cauchy formula for linear systems of any fractional order”, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky., 2007, no. 1, 50–55 (in Russian) | MR | Zbl

[10] Chikrii A. A., Rappoport I. S., “Method of resolving functions in the theory of conflict-controlled processes”, Cybern. Syst. Anal., 48:4 (2012), 512–531 | DOI | MR | Zbl

[11] Chikrii A. O., Chikrii G. Ts., “Matrix resolving functions in dynamic games of approach”, Cybern. Syst. Anal., 50:2 (2014), 201—217 | DOI | MR | Zbl

[12] Chikriy A. A., Rappoport I. S., “Measurable many-valued maps and their selectors in dynamic pursuit games”, J. Autom. Inform. Sci., 38:1 (2006), 57–67 | DOI | MR

[13] Dzhrbashyan M. M., Integral'nye preobrazovaniya i predstavleniya funkcij v kompleksnoj oblasti [Integral Transforms and Representations of Functions in the Complex Domain], Nauka, Moscow, 1966, 672 pp. (in Russian) | MR

[14] Friedman A., Differential Games, John Wiley Sons, New York, 1971, 350 pp. | MR | Zbl

[15] Gomoyunov M. I., “Extremal shift to accompanying points in a positional differential game for a fractional-order system”, Proc. Steklov Inst. Math., 308 (2020), 83–105 | DOI | MR | Zbl

[16] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag–Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin Heidelberg, 2014, 443 pp. | DOI | MR | Zbl

[17] Grigorenko N. L., “Simple pursuit evasion game with a group of pursuers and one evader”, Vestnik Moskov. Univ. Ser. XV Vychisl. Matematika i Kibernetika, 1983, no. 1, 41–47 (in Russian) | MR | Zbl

[18] Grigorenko N. L., Matematicheskie metody upravleniya neskol'kimi dinamicheskimi processami [Mathematical methods of control a few dynamic processes], Moscow State University, Moscow, 1990, 197 pp. (in Russian)

[19] Hájek O., Pursuit Games, Academic Press, New York, 1975, 265 pp. | MR

[20] Isaacs R., Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, John Wiley and Sons, New York, 1965, 384 pp. | MR | Zbl

[21] Krasovskii N. N., Subbotin A. I., Pozicionnye differencial'nye igry [Positional Differential Games], Nauka, Moscow, 1974, 456 pp. (in Russian) | MR

[22] Leitmann G., Cooperative and Non-Cooperative Many Players Differential Games, Springer-Verlag, Wien, 1974, 77 pp. | DOI | MR | Zbl

[23] Machtakova A. I., Petrov N. N., “Pursuit of Rigidly Coordinated Evaders in a Linear Problem with Fractional Derivatives, a Simple Matrix, and Phase Restrictions”, Proc. Stability and Control Processes. SCP 2020, Lect. Notes Control Inf. Sci., eds. Smirnov N., Golovkina A., 2022, 391—398 | DOI | MR

[24] Petrosyan L. A., Differencial'nye igry presledovaniya [Differential Games of Pursuit], Leningrad University Press, Leningrad, 1977, 224 pp. (in Russian) | MR

[25] Petrov N. N., “Group Pursuit Problem in a Differential Game with Fractional Derivatives, State Constraints, and Simple Matrix”, Diff. Equat., 55:6 (2019), 841–848 | DOI | MR | Zbl

[26] Petrov N. N., “Matrix resolving functions in a linear problem of group pursuit with multiple capture”, Tr. Inst. Mat. Mekh. UrO RAN, 27:2 (2021), 185–196 | DOI | MR

[27] Petrov N. N., “Multiple capture in a group pursuit problem with fractional derivatives and phase restrictions”, Mathematics, 9:11 (2021), 1171, 12 pp. | DOI | MR

[28] Petrov N. N., “The problem of simple group pursuit with phase constraints in time scale”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020), 249–258 | DOI | MR | Zbl

[29] Petrov N. N., Machtakova A. I., “Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix”, Izv. IMI UdGU, 56 (2020), 50–62 | DOI | MR | Zbl

[30] Petrov N. N., Solov'eva N. A., “Multiple capture of given number of evaders in linear recurrent differential games”, J. Optim. Theory Appl., 182:1 (2019), 417–429 | DOI | MR | Zbl

[31] Petrov N. N., Solov'eva N. A., “Multiple capture in Pontryagin's recurrent example with phase constraints”, Proc. Steklov Inst. Math., 293:Suppl. 1 (2016), 174–182 | DOI | MR

[32] Petrov N. N., Solov'eva N. A., “Multiple capture in Pontryagin's recurrent example”, Autom. Remote Control, 77:5 (2016), 855–861 | DOI | MR | Zbl

[33] Petrov N. N., Narmanov A. Ya., “Multiple capture of a given number of evaders in a problem with fractional derivatives and a simple matrix”, Proc. Steklov Inst. Math., 309:Suppl. 1 (2020), S105–S115 | DOI | MR

[34] Pollard H., “The completely monotonic character of the Mittag–Leffler function $E_a(-x)$”, Bull. Amer. Math. Soc., 54:12 (1948), 1115–1116 | DOI | MR | Zbl

[35] Polovinkin E. S., Mnogoznachnyj analiz i differencial'nye vklyucheniya [Multivalued Analysis and Differential Inclusions], Fizmathlit, Moscow, 2015, 524 pp. (in Russian)

[36] Pontryagin L. S., Izbrannye nauchnye trudy [Selected Scientific Works], v. 2, Nauka, Moscow, 1988, 576 pp. (in Russian) | MR

[37] Popov A. Yu., Sedletskii A. M., “Distribution of roots of Mittag–Leffler functions”, J. Math. Sci., 190:2 (2013), 209–409 | DOI | MR

[38] Pshenichnyi B. N., “Simple pursuit by several objects”, Kibernetika, 1976, no. 3, 145–146 (in Russian) | MR | Zbl

[39] Rappoport J. S., “Strategies of group approach in the method of resolving functions for quasilinear conflict-controlled processes”, Cybern. Syst. Anal., 55:1 (2019), 128–140 | DOI | MR | Zbl

[40] Subbotin A. I., Chentsov A. G., Optimizaciya garantii v zadachah upravleniya [Optimization of a Guarantee in Problems of Control], Nauka, Moscow, 1981, 288 pp. (in Russian) | MR