On double signal number of a graph
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 64-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A set $S$ of vertices in a connected graph ${G=(V,E)}$ is called a signal set if every vertex not in $S$ lies on a signal path between two vertices from $S$. A set $S$ is called a double signal set of $G$ if $S$ if for each pair of vertices $x,y \in G$ there exist $u,v \in S$ such that $x,y \in L[u,v]$. The double signal number $\mathrm{dsn}\,(G)$ of $G$ is the minimum cardinality of a double signal set. Any double signal set of cardinality $\mathrm{dsn}\,(G)$ is called $\mathrm{dsn}$-set of $G$. In this paper we introduce and initiate some properties on double signal number of a graph. We have also given relation between geodetic number, signal number and double signal number for some classes of graphs.
Keywords: geodetic set, double signal number.
Mots-clés : signal set, double signal set
@article{UMJ_2022_8_1_a6,
     author = {X. Lenin Xaviour and S. Ancy Mary},
     title = {On double signal number of a graph},
     journal = {Ural mathematical journal},
     pages = {64--75},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a6/}
}
TY  - JOUR
AU  - X. Lenin Xaviour
AU  - S. Ancy Mary
TI  - On double signal number of a graph
JO  - Ural mathematical journal
PY  - 2022
SP  - 64
EP  - 75
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a6/
LA  - en
ID  - UMJ_2022_8_1_a6
ER  - 
%0 Journal Article
%A X. Lenin Xaviour
%A S. Ancy Mary
%T On double signal number of a graph
%J Ural mathematical journal
%D 2022
%P 64-75
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a6/
%G en
%F UMJ_2022_8_1_a6
X. Lenin Xaviour; S. Ancy Mary. On double signal number of a graph. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 64-75. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a6/

[1] Buckley F., Harary F., Distance in Graphs, Addison-Wesley Pub. Co., Redwood City, Calif, 1990, 335 pp. | MR | Zbl

[2] Balamurugan S., Antony Doss R., “The edge signal number of a graph”, Discrete Math. Algorithms Appl., 13:03 (2021), 2150024 | DOI | MR | Zbl

[3] Chartrand G., Harary F., Swart H.C., Zhang P., “Geodomination in graphs”, Bull. Inst. Combin. Appl., 31 (2001), 51–59 | MR | Zbl

[4] Chartrand G., Harary F., Zhang P., “On the geodetic number of a graph”, Networks, 39:1 (2002), 1–6 | DOI | MR | Zbl

[5] Kathiresan K. M., Sumathi R., “A study on signal distance in graphs”, Algebra, Graph Theory, Appl., 2009, 50–54

[6] Ostrand P. A., “Graphs with specified radius and diameter”, Discrete Math., 4:1 (1973), 71–75 | DOI | MR | Zbl

[7] Santhakumaran A.P., Jebaraj T., “Double geodetic number of a graph”, Discuss. Math. Graph Theory, 32:1 (2012), 109–119 | DOI | MR | Zbl

[8] Sethu Ramalingam S., Balamurugan S., “On the signal distance in graphs”, (accepted), Ars Combinatoria, 2018 | MR