On solving an enhanced evasion problem for linear discrete-time systems
Ural mathematical journal, Tome 8 (2022) no. 1, pp. 55-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of an enhanced evasion for linear discrete-time systems, where there are two conflicting bounded controls and the aim of one of them is to be guaranteed to avoid the trajectory hitting a given target set at a given final time and also at intermediate instants. First we outline a common solution scheme based on the construction of so called solvability tubes or repulsive tubes. Then a much more quick and simple for realization method based on the construction of the tubes with parallelepiped-valued cross-sections is presented under assumptions that the target set is a parallelepiped and parallelotope-valued constraints on controls are imposed. An example illustrating this method is considered.
Keywords: linear control systems, discrete-time systems, uncertainty, evasion problem, parallelepipeds.
@article{UMJ_2022_8_1_a5,
     author = {Elena K. Kostousova},
     title = {On solving an enhanced evasion problem for linear discrete-time systems},
     journal = {Ural mathematical journal},
     pages = {55--63},
     year = {2022},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a5/}
}
TY  - JOUR
AU  - Elena K. Kostousova
TI  - On solving an enhanced evasion problem for linear discrete-time systems
JO  - Ural mathematical journal
PY  - 2022
SP  - 55
EP  - 63
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a5/
LA  - en
ID  - UMJ_2022_8_1_a5
ER  - 
%0 Journal Article
%A Elena K. Kostousova
%T On solving an enhanced evasion problem for linear discrete-time systems
%J Ural mathematical journal
%D 2022
%P 55-63
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a5/
%G en
%F UMJ_2022_8_1_a5
Elena K. Kostousova. On solving an enhanced evasion problem for linear discrete-time systems. Ural mathematical journal, Tome 8 (2022) no. 1, pp. 55-63. http://geodesic.mathdoc.fr/item/UMJ_2022_8_1_a5/

[1] Ananyev B. I., “An application of motion correction methods to the alignment problem in navigation”, Ural Math. J., 2:2 (2016), 16–26 | DOI

[2] Bertsekas D. P., Rhodes I. B., “On the minimax reachability of target sets and target tubes”, Automatica, 7:2 (1971), 233–247 | DOI | MR | Zbl

[3] Botkin N., Martynov K., Turova V., Diepolder J., “Generation of dangerous disturbances for flight systems”, Dyn. Games and Appl., 9 (2019), 628–651 | DOI | MR | Zbl

[4] Chernousko F. L., Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994, 304 pp.

[5] Filippova T. F., “Control and estimation for a class of impulsive dynamical systems”, Ural Math. J., 5:2 (2019), 21–30 | DOI | MR | Zbl

[6] Filippova T. F., Matviychuk O. G., “Optimality principles for solving nonlinear control problems under uncertainty”, CHAOS 2021: Proc. 14th Chaotic Modeling and Simulation Int. Conf., Springer Pros. Complexity, eds. Skiadas C.H., Dimotikalis Y., 2022, 143–154 | DOI | MR

[7] Gusev M. I., Zykov I. V., “External estimates and comparison principle for trajectory tubes of nonlinear control systems”, AIP Conf. Proc., 2164 (2019), 060008, 10 pp. | DOI

[8] Kamneva L. V., Patsko V. S., “Construction of the solvability set in differential games with simple motion and nonconvex terminal set”, Proc. Steklov Inst. Math., 301: Suppl. 1 (2018), S57–S71 | DOI | MR | Zbl

[9] Kostousova E. K., “State estimation for dynamic systems via parallelotopes: Optimization and parallel computations”, Optim. Methods Softw., 9:4 (1998), 269–306 | DOI | MR | Zbl

[10] Kostousova E. K., “On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems”, Algoritmy i programmnye sredstva parallel'nykh vychislenii [Algorithms and Software for Parallel Computing], v. 9, IMM UrO RAN, Ekaterinburg, 2006, 84–105 (in Russian) | MR

[11] Kostousova E. K., “On the polyhedral method of solving problems of control strategy synthesis”, Proc. Steklov Inst. Math., 292:Suppl. 1 (2016), S140–S155 | DOI | MR | Zbl

[12] Kostousova E. K., “On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints”, Discrete Contin. Dyn. Syst., 38:12 (2018), 6149–6162 | DOI | MR

[13] Kostousova E. K., “On a polyhedral method of solving an evasion problem for linear dynamical systems”, AIP Conf. Proc., 2164 (2019), 060009, 10 pp. | DOI

[14] Kostousova E. K., “On a polyhedral method for solving an evasion problem for linear discrete-time systems”, Proc. of 2020 15th Int. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), IEEE Xplore, 2020, 1–4 | DOI | MR

[15] Kostousova E. K., “External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms”, Math. Control Relat. Fields, 11:3 (2021), 625–641 | DOI | MR | Zbl

[16] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer, New York, 1988, 517 pp. | MR | Zbl

[17] Kurzhanski A. B., Daryin A. N., Dynamic Programming for Impulse Feedback and Fast Controls: The Linear Systems Case, v. 468, Lect. Notes Control Inf. Sci., Springer, London, 2020, 275 pp. | DOI | MR | Zbl

[18] Kurzhanski A. B., Vályi I., Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[19] Kurzhanski A. B., Varaiya P., Dynamics and Control of Trajectory Tubes: Theory and Computation, Systems Control Found. Appl., 85, Birkhäuser, Basel, 2014, 445 pp. | DOI | MR | Zbl

[20] Kurzhanskiy A. A., Varaiya P., “Theory and computational techniques for analysis of discrete-time control systems with disturbances”, Optim. Methods Softw., 26:4–5 (2011), 719–746 | DOI | MR | Zbl

[21] Martynov K., Botkin N., Turova V., Diepolder J., “Real-time control of aircraft take-off in windshear. Part I: Aircraft model and control schemes”, Proc. of 2017 25th Mediterranean Conf. on Control and Automation (MED 2017), IEEE Xplore, 2017, 277–284 | DOI

[22] Martynov K., Botkin N., Turova V., Diepolder J., “Quick construction of dangerous disturbances in conflict control problems”, Advances in Dynamic Games, Ann. Internat. Soc. Dynam. Games, 17, eds. Ramsey D.M., Renault J., Birkhäuser, Cham, 2020, 3–24 | DOI | MR

[23] Schneider R. G., Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993, 490 pp. | MR | Zbl

[24] Ushakov V. N., Uspenskii A. A., Matviychuk A. R., Malev A. G., “Stability defect of sets in game problems of approaching”, IFAC-PapersOnline, 45:25 (2012), 89–93 | DOI